期刊文献+

二阶段循环优化差分演化算法

Framework of Recurring Two-Stage Differential Evolution
下载PDF
导出
摘要 差分演化算法具有结构简单容易实现,收敛速度快和鲁棒性强等优点,但是存在早熟和进化停滞的现象.提出的二阶段循环优化差分演化算法框架能够很好地保持算法局部开采能力和全局勘探能力的平衡.在差分演化的变异操作中,以马氏距离矩阵为依据分别在目标向量的近邻或者远邻中选择父辈个体参与变异,这样分别形成偏重局部开采或者偏重全局勘探的搜索阶段,此二阶段循环迭代,使得局部开采和全局勘探能力得到震荡平衡.在CEC2005标准函数集上的测试结果显示了提出算法框架的有效性. The advantages of differential evolution(DE) are its simple structure ,easiness of implement ,fast convergence and robustness .However ,DE often suffers from premature convergence and stagnation problems .A framework of the recurring two-stage DE is proposed to balance global exploration and local exploitation .The proposed framework is based on repeated and alternated ex-ecution of two different stages ,namely ,the local exploitation and global exploration stages .The parent individuals for the mutation operation at each stage are selected from neighbors or strangers of the target vector ,respectively ,based on the Mahalanobis distance matrix .The simulation results on the CEC2005 real-parameter optimization benchmark functions show that the proposed framework can make DE more efficient .
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第12期2456-2461,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60905038 No.60805026 No.61070076) 广州市珠江科技新星 广东商学院科研创新团队建设计划
关键词 差分演化 二阶段循环优化 局部开采 全局勘探 连续优化 differential evolution recurring two-stage optimization local exploitation global exploration continuous opti-mization
  • 相关文献

参考文献16

  • 1STORN R,PRICE K. Differential evolution-a simple and effi-cient heuristic for global optimization over continuous spaces[J].{H}Journal of Global Optimization,1997,(04):341-359.
  • 2DAS S,SUGANTHAN P N. Differential evolution:A survey of the state-of-the-art[J].{H}IEEE Transactions on Evolutionary Computation,2011,(01):4-31.
  • 3NERI F,TITTONEN V. Recent advances in differential evolu-tion:A survey and experimental analysis[J].Artificial Intelli-gence Review,2011,(1-2):61-106.
  • 4ANGIRA R,SANTOSH A. A modified trigonometric differen-tial evolution algorithm for optimization of dynamic systems[A].Piscataway:IEEE Press,2008.1463-1468.
  • 5NOMAN N,IBA H. Accelerating differential evolution using an adaptive local search[J].{H}IEEE Transactions on Evolutionary Computation,2008,(01):107-125.
  • 6张晓伟,刘三阳.免比例因子F的差分进化算法[J].电子学报,2009,37(6):1318-1323. 被引量:14
  • 7BREST J;GREINER S;BOˇSKOVIˇCB;MERNIK M 差UMER V.Self-adapting control parameters in differential evolution:A comparative study on numerical benchmark problems[J],{H}IEEE Transactions on Evolutionary Computation2006(06):646-657.
  • 8RAHNAMAYANS,TIZHOOSHHR,SALAMAMMA. Op-position-based differential evolution[J].{H}IEEE Transactions on Evolutionary Computation,2008,(01):64-79.
  • 9DASS,ABRAHAMA,CHAKRABORTYUK,KONARA. Differential evolution with a neighborhood-based mutation op-erator[J].{H}IEEE Transactions on Evolutionary Computation,2009,(03):526-553.
  • 10贺毅朝,王熙照,刘坤起,王彦祺.差分演化的收敛性分析与算法改进[J].软件学报,2010,21(5):875-885. 被引量:68

二级参考文献16

  • 1张利彪,周春光,马铭,孙彩堂.基于极大极小距离密度的多目标微分进化算法[J].计算机研究与发展,2007,44(1):177-184. 被引量:29
  • 2赵光权,彭喜元,孙宁.基于混合优化策略的微分进化改进算法[J].电子学报,2006,34(B12):2402-2405. 被引量:20
  • 3张丰田,宋家骅,李鉴,程晓磊.基于混合差异进化优化算法的电力系统无功优化[J].电网技术,2007,31(9):33-37. 被引量:25
  • 4Store, Price. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization. 1997,11(4) :341 - 359.
  • 5Abbass. The self-adaptive pareto differential evolution algorithm [ A]. Proceedings of the IEEE Congress on Evolutionary Computation[ C]. Honolulu, USA: IEEE, Press, 21302.831 - 836.
  • 6Qin, Suganthan. Self-adaptive differential evolution algorithm for numerical optimization [ A ]. Proceedings of the IEEE Congress on Evolutionary Computation[ C]. Edinburgh, USA: Institute of Electrical and Electronics Engineers Computer Society,2005. 1785 - 1791.
  • 7Zaharie. Critical values for the control parameters of differential evolution algorithms [ A ]. Eighth International MENDEL Conference on Soft Computing[ C]. Bmo, Czech Republic: Bmo University of Technology,2002.62 - 67.
  • 8Ronkkonen, Lampinen. On using normalty distributed mutation step length for the differential evolution algorithm [ A ]. Ninth International MENDEL Conference on Soft Computing [ C ]. Bmo, Czech Republic: Bmo University of Technology, 2003.11 - 18.
  • 9Kim, Chong, Park, et al. Differential evolution strategy for constrained global optimization and application to practical engineering problems[J]. IEEE Transactions on Magnetics,2007,43 (4) : 1565 - 1568.
  • 10Birbil, Fang. An electromagnetism-like mechanism for global optimization[ J]. Journal of Global Optimization, 2003,25 (3) : 263 - 282.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部