期刊文献+

烟草病毒抗性相关基因SGT1的电子克隆及序列分析 被引量:1

Cloning and Sequence Analysis of Tobacco Anti-virus Resistance Related Gene SGT1
下载PDF
导出
摘要 为研究烟草病毒抗性信号通路基因(SGT),以番茄(Solanum lycopersicum)信号通路基因slSGT1-2为探针,利用电子克隆的方法从栽培烟草品种珊西烟中克隆信号通路基因,并对其进行了序列分析。结果表明:成功克隆到的信号通路基因cDNA序列1 041bp,包含完整的开放阅读框,编码346个氨基酸,具有23kD类SGT1蛋白结构域(p23-SGT1like domain)。分子式为C1719H2707N441O509S16,分子量为38 209Da,理论等电点为5.35,属于稳定蛋白;在275~308氨基酸处形成1个跨膜区,N端以螺旋为主,C端在螺旋中出现折叠。NtSGT1氨基酸序列与番茄SGT1-2基因编码蛋白一致性达到90%,而与已报道的野生烟基因相比C端区域缺少部分保守结构域。说明,NtSGT1是烟草中未报道的病毒抗性信号通路基因。 To study on the gene SGT, by the method of in silico cloning, the sequence of NtSGT1 (Nicotina tabacum SGT1 gene), a putative important signal transduction factor, was obtained successfully from tobacco cultivar Shanxi using Solanum lycopersicum SGTI-2 gene sequence as probe. Sequence analysis showed that the in silico cloned cDNA had a complete open reading frame, and encoded a protein composed of 346 amino acid residues with TPR and SGTl-like conserved domain. Multiple alignment results showed that the sequence encoded by NISGT1, lack of the C-terminus counterpart aligned with NbSGT1 sequence, sharing 90~ identity with Solanum lycopersicum homologue gene. The alignment and evolution a^alysis confirmed that the NtSGT1 could be an unpublished important gene which related with resistance signal transduction.
出处 《贵州农业科学》 CAS 北大核心 2013年第12期32-35,共4页 Guizhou Agricultural Sciences
基金 贵州省科学技术基金"贵州马铃薯Y病毒分子变异和重组的研究"[黔科合J字(2013)2194] 贵州省科学技术基金"烟草根际可培养放线菌多样性及应用评价"[黔科合J字(2012)2257] 中国烟草总公司贵州省公司科技计划项目"贵州省烟草有害生物调查研究"(201022)
关键词 栽培烟草 病毒抗性 SGT1 电子克隆 tobacco cultivar anti-virus resistance SGT1 electronic cloning
  • 相关文献

参考文献21

  • 1Zaitlin M. The discovery of the causal agent of the tobacco mosaic disease[M]//Kung S D, Yang S F. Discovery in Plant Biology. Hong Kong :World Scien- tific Publishing, 1998 : 106-110.
  • 2Dinesh-Kumar S P, Whitham S, Choi D,et al. Trans- poson tagging of tobacco mosaic virus resistance gene N Its possible role in the TMV-N-mediated signal transduction pathway[J]. Proc. Natl. Acad. Sci., 1995,92(10) :4175-4180.
  • 3Dinesh-Kumar S P,Tham W H, Baker B J. Structure- function analysis of the tobacco mosaic virus resist- ance gene N[J]. Proc. Natl. Acad. Sci.,2000,97 (26) : 14789-14794.
  • 4Padmanabhan M, Cournoyer P, Dinesh-Kumar S P. The leucine-rich repeat domain in plant innate immu- nity: a wealth of possibilities[J]. Cellular Microbiol. 2009,11 (2) : 191-198.
  • 5Liu Y, Schiff M, Marathe R, et al. Tobacco Rarl, EDsl and NPR1/NIM1 like genes are required for N- mediated resistance to tobacco mosaic virus[J]. Plant J. ,2002,30(4) :415-429.
  • 6Liu Y, Schiff M, Dinesh-Kumar S P. Involvement of MEK1 MAPKK,NTF6 MAPK, WRKY/MYB tran- scription factors, Coil and CTR1 in N-mediated re- sistance to tobacco mosaic virus[J]. 2004,38(5) :800- 809.
  • 7Liu Y,Sehiff M,Serino G, et al. Role of SCF ubiquit- in-ligase and the COP9 signalosome in the N gene-me- diated resistance response to tobacco mosaic virus[J].Plant Ce11,2002,14(7) : 1483-1496.
  • 8Leister R,Dahlbeek D, Day B, et al. Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana[J]. Plant Cell, 2005,17 (4) : 1268-1278.
  • 9Bhattarai K, Li Q, Liu Y, et al. The MI-1 mediated pest resistance requires Hsp90 and Sgtl [J]. Plant Phsyiol. ,2007,144(1) :312-323.
  • 10Chung E, Ryu C, Oh, S, et al. Suppression of pepper SGT1 and SKP1 causes severe retardation of plant growth and compromises basal resistance[J]. Physiol. Plantarum, 2006,126(4) : 605- 617.

二级参考文献37

  • 1Roxrud I, Lid S E, Fletcher J C, et al. GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development [ J ]. Plant and Cell Physiology, 2007, 48 (3) : 471483.
  • 2Chen I C, Lee S C, Pan S M, et al. GASA4, a GA-stimula- ted gene, participates in light signaling in Arabidopsis [ J ]. Plant Science, 2007, 172(6) : 1062-1071.
  • 3Segura A, Moreno M, Madueno F, et al. Snakin-1, a pep- tide from potato that is active against plant pathogens [ J ]. Molecular Plant-Microbe Interactions, 1999, 12 ( 1 ) : 16- 23.
  • 4Gao AG, Hakimi SM, Mittanck CA, et al. Fungal pathogen protection in potato by expression of a plant defensin peptide [ J]. Nature Bioteehnology, 2000, 18(12) : 1307-1310.
  • 5Bcrrocal-Lobo M, Segura A, Moreno M, et al. Snaking2, an antimicrobiaI peptide from potato whose gene is locally in- duced by wounding and responds to pathogen infection [ J]. Plant Physiology, 2002, 128(3): 951-961.
  • 6Almasia N I, Bazzini A A, Hopp H E, et al. Overexpres- sion of srtakin-1 gene enhances resistance to Rhizoctonia so- lani and Erwinia carotovora in transgenic potato plants [ J ]. Molecular Plant Pathology, 2008, 9(3): 329-335.
  • 7Gill R W, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags (ESTs) [ J]. Biotechnology Annual Review, 2000, 5: 25-44.
  • 8Shi L, Gast R T, Gopalraj M, et al. Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato [J]. The Plant Journal, 1992, 2(2) : 153-159.
  • 9Ben-Nissan G, Weiss D. The petunia homologue of tomatogastl: transcript accumulation coincides with gibberellin- induced corolla cell elongation [ J ]. Plant Molecular Biolo- gy, 1996, 32(6): 1067-1074.
  • 10Taylor B H, Scheuring C F. A molecular marker for lateral root initiation : the RSI-1 gene of tomato (Lycopersicon escu- lentum Mill ) is activated in early lateral root primordia [J]. Molecular Genetics and Genomics. 1994, 243(2): 148-157.

共引文献2

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部