期刊文献+

最小最大概率回归机在短时交通流预测中的应用 被引量:8

Application of Minimax Probability Machine Regression in Short-term Traffic Flow Prediction
下载PDF
导出
摘要 为了提高短时交通流预测精度,更加精确地进行交通流规划和管理,引入一种新颖的基于最小最大概率回归机(MPMR)的短时交通流预测模型。针对北京某公路监测站实测的交通流数据集以及英国某地区实测的交通流数据集,利用基于MPMR的预测模型进行短时交通流预测,并与常规的基于神经网络、基于支持向量机(SVM)以及基于自适应神经模糊推理系统(ANFIS)预测模型的预测性能进行比较。试验结果表明,基于MPMR的短时交通流预测模型可以很好地跟踪实际流量值,在同等条件下相比常规预测模型的预测精度更优,验证了所提出模型的有效性。 To improve the precision of short-term traffic flow prediction and make programming and management of traffic flow more accurately, a novel short-term traffic flow prediction model based on minimax probability machine regression (MPMR) is proposed. The prediction model based on MPMR is applied in the predictions of the short-term traffic flows using measured data set of a Beijing highway monitoring station and traffic flow data set of a region in UK, and its prediction performance is compared with those of prediction models based on neural network, support vector machine (SVM) and adaptive neural fuzzy inference system (ANFIS). The experiment result shows that the short-term traffic flow prediction model based on MPMR can track the actual traffic flow well, and the accuracy of prediction is better than those of traditional prediction models under the same condition. The effectiveness of the proposed prediction model is verified.
作者 王娇 李军
出处 《公路交通科技》 CAS CSCD 北大核心 2014年第2期121-127,共7页 Journal of Highway and Transportation Research and Development
基金 甘肃省财政厅基本业务费项目(620026) 甘肃省硕导项目(1104-09)
关键词 交通工程 预测模型 最小最大概率回归机 短时交通流 混沌 traffic engineering prediction model MPMR short-term traffic flow chaos
  • 相关文献

参考文献13

  • 1姚琛,罗霞,汉克.范少伦.基于粗集和神经网络耦合的短时交通流预测[J].公路交通科技,2010,27(11):104-107. 被引量:7
  • 2齐驰,侯忠生.自适应单指数平滑法在短期交通流预测中的应用[J].控制理论与应用,2012,29(4):465-469. 被引量:29
  • 3HAYKIN S. Neural Network and Learning Machine [ M ]. 3rd ed. Canada: Prentice Hall, 2008 : 268 - 304.
  • 4孙占全,潘景山,张赞军,张立东,丁青艳.基于主成分分析与支持向量机结合的交通流预测[J].公路交通科技,2009,26(5):127-131. 被引量:19
  • 5STROHMANN T R, GRUDIC G Z. A Formulation for Minimax Probability Machine Regression [ C ] // Proceedings of 15th Advances in Neural Information Processing Systems, Cambridge : MIT Press, 2003 : 769 - 776.
  • 6MU Xiang-yang , ZHANG Tai-yi, ZHOU Ya-tong. A Novel Minimax Probability Machine for Network Traffic Prediction [ J ]. WSEAS Transactions on Business and Economics, 2007 , 9 (4): 135-139.
  • 7LANCKRIET G, GHAOUI L E, BHATrACHARYYA C, et al. Minimax Probability Machine [ C ] // Proceedings of 14th Advances in Neural Information Processing Systems. Cambridge : MIT Press, 2002 : 801 - 807.
  • 8MU Xiang-yang, ZHOU Ya-tong. A Novel Gussian Kernel Function for Minimax Probability Machine [ C ] // Proceedings of the 2009 WRI Global Congress on Intelligent Systems. Xiamen: IEEE Press, 2009:491 - 494.
  • 9SUN Jian-cheng. Modelling of Chaotic Time Series Using Minimax Probability Machine Regression [ C ] // 2009 WRI International Conference on Communications and Mobile Computing. Yunnan?: IEEE Press, 2009:321 - 324.
  • 10LIU Zun-xiong, XIE Xin, ZHANG De-yun. Predict Chaotic Time Series Using Minimax Probability Machine Regression [ J]. Information Technology Journal. 2006, 5 (3): 529- 533.

二级参考文献55

共引文献120

同被引文献81

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部