期刊文献+

基于高点视频的交通事件检测技术 被引量:2

Traffic Incident Detection Technology Based on Highly-shot Video
下载PDF
导出
摘要 与传统近距视频不同的高点视频检测范围大、空间尺度变化大、场景复杂度高、交通事件种类繁多。结合传统近距视频检测技术,提出了一种基于高点视频的交通事件检测技术。首先利用混合高斯模型进行了背景建模及对象级的背景更新,实现了运动目标的检测。再利用基于区域预测和结合特征的方法进行了运动目标跟踪,最后采取基于车辆目标特征与区域职能的独立、联合事件检测模式实现了高点视频的交通事件检测。该方法实现了基于高点视频的交通事件检测,提高了对复杂大场景下高点视频的可解读性。 Compared with traditional close-up video, highly-shot video can detect larger range of scene, it contains larger-scale changes in space, a higher complexity of scene, and more different types of traffic incident. We proposed a method of highly-shot video based traffic incident detection technology on the basis of learning from traditional close-up video based detection. First, we used Gaussian mixture model to perform background modeling and object-level background update for moving target detection. Then, we combined region-prediction-based and feature-based methods to track moving targets, lastly, by using vehicle features and regional independent and joint incidents detection to finish the traffic incident detection. We implemented the method to realize the highly-mounted video-based traffic incident detection, and increased the interpretability of highly-shot video with large scenes.
出处 《公路交通科技》 CAS CSCD 北大核心 2014年第2期128-134,共7页 Journal of Highway and Transportation Research and Development
基金 国家高技术研究发展计划(八六三计划)项目(20J2AA112309)
关键词 交通工程 交通事件检测 背景建模 高点视频 目标跟踪 traffic engineering traffic incident detection background modeling highly-shot video object tracking
  • 相关文献

参考文献17

  • 1黄丹;蔡可.基于视频的违章车辆自动识别技术研究[A]{H}北京:电子工业出版社,201260-66.
  • 2KAMEDA Y,MINOH M. A Human Motion Estimation Method Using 3-successive Video Frames[A].Gifu:IOS Press,1996.135-140.
  • 3KUMAR A,TANNENBAUM A R,BALAS G J. Optical Flow:A Curve Evolution Approach[J].{H}IEEE Transactions on Image Processing,1996,(04):598-610.
  • 4SEKI M,FUJIWARA H,SUMI K. A Robust Background Subtraction Method For Changing Background[A].Piscataway:IEEE,2000.207-213.
  • 5UNNO H,OJIMA K,HAYASHIB K. Vehicle Motion Tracking Using Symmetry of Vehicle and Background Subtraction[A].Istanbul:IEEE,2007.1127-1131.
  • 6FATHY M,SIYAL M Y. An Image Detection Technique Based on Morphological Edge Detection and Background Differencing for Real-time Traffic Analysis[J].{H}Pattern Recognition Letters,1995,(02):1321-1330.
  • 7ZIVKOVIC Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction[A].Cambridge,UK:IEEE,2004.28-31.
  • 8STAUFFER C,GRIMSON W E L. Adaptive Background Mixture Models for Real-time Tracking[A].Fort Collins,CO:IEEE,1999.246-252.
  • 9李志慧,张长海,曲昭伟,王殿海.交通流视频检测中背景模型与阴影检测算法[J].吉林大学学报(工学版),2006,36(6):993-997. 被引量:16
  • 10IKEDA H,MATSUO T,KANEDO Y. Abnormal Incident Detection System Employing Image Processing Technology[A].Tokyo:IEEE,1999.748-752.

二级参考文献23

  • 1曹建农.自动检测违章车辆的方法[J].长安大学学报(自然科学版),2005,25(1):64-68. 被引量:3
  • 2佟守愚,程三伟,李江.道路平面交叉口车辆违章右转弯行为识别研究[J].公路交通科技,2005,22(4):112-115. 被引量:6
  • 3汤淑明,王坤峰,李元涛.基于视频的交通事件自动检测技术综述[J].公路交通科技,2006,23(8):116-121. 被引量:25
  • 4LIM D W, CHOI S H, JUN J S, Automated Detection of All Kinds of Violations at A Street Intersection Using Real Time Individual Vehicle Tracking [ C ] //Fifth IEEE Southwest Symposium on Image Analysis and Interpretation. Santa Fe, New Mexico, USA: IEEE, 2002:126 - 129.
  • 5MAW H, HUANG L, LIU C P. Advanced Local Binary Pattern Descriptors for Crowd Estimation [ C ]// IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Wuhan, China: IEEE, 2008 : 958 - 962.
  • 6KALMAN R E. A New Approach to Linear Filtering and Prediction Problems [ J ]. Transactions of the ASME-Joumal of Basic Engineering: Series D, 1960, 82:35-45.
  • 7COMANICIU D, RAMESH V, MEER P. Real-time Tracking of Non-rigid Objects Using Mean Shift [ C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, SC, USA : IEEE, 2000 : 142 - 149.
  • 8HUE C, CADRE J, PEREZ P. Sequential Monte Carlo Methods for Multiple Target Tracking and Data Fusion [J]. IEEE Transactions on Signal Processing, 2002, 50 (2): 309-325.
  • 9OJALA T, PIETIKAINEN M, MAENPAA T. Muhiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971 -987.
  • 10Ridder C, Munkelt O, Kirchner H..Adaptive background estimation and foreground detection using kalman filtering[ C ] //Proc International Conference on recent Advances in Mechatronics,1995 : 193-199.

共引文献20

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部