期刊文献+

多车道环境下车辆运行状态的一种决策方法

A Decision-making Method for Vehicle Driving State under Multi-lane Road Condition
下载PDF
导出
摘要 城市道路解决拥堵手段之一为拓宽道路,但它导致车辆运行所受影响因素增多,驾驶员在这一状态下难以及时获取完备信息并做出快速和准确的判断。针对这一问题,多车道车辆运行的一种决策方法被设计提出,利用机器决策方式提高多车道环境下驾驶员进行决策的准确性和快速性。为此分析了多道环境中车辆间的制约关系,利用粗糙集理论构造了运行状态信息表,并基于制约关系设计了启发式互信息约简算法。为解决边界域内状态决策值不精确和收敛速度慢的问题,根据车辆行驶过程中驾驶员的心理和精神因素,建立了多车道车辆运行的模糊意图模型。仿真试验表明,模糊意图模型能够对基于粗糙集的多车道车辆运行决策方法进行有效补充,改进方法能够在多车道环境中对车辆运行的状态给予快速、准确的决策值,其决策精度大于90%,最大决策时间小于0.81 s。 Road widening is one of the solutions of urban traffic jam, but it leads to increasing of impact factors on vehicles, drivers are difficult to obtain complete information in time and cannot make a rapid and accurate judgment in this situation. In order to solve this problem, a decision-making method for driving vehicle in multi-lane environment is designed, the accuracy and quickness of decision-making is improved based on the way of machine decision-making in the situation of multi-lane road. Therefore, the constraint relation among vehicles in the multi-lane environment is analyzed, the driving state information table is constructed by rough sets theory, and the heuristic mutual information reduction algorithm is designed based on the constraint relationship. For solving the problem of inaccurate state decision-making values and slow convergence inside the edge boundaries, a fuzzy intention model for vehicles running in multi-lane environment is designed according to the driver's psychological and spiritual factors. The simulation result demonstrates that the fuzzy intention model is an effective supplement for the decision-making method based on rough set theory. The vehicles running state in multi-lane situation can be acquired rapidly and accurately by the improved method, the accuracy is higher than 90% , and the maximum time of decision-making is less than 0. 81 s.
出处 《公路交通科技》 CAS CSCD 北大核心 2014年第2期135-140,149,共7页 Journal of Highway and Transportation Research and Development
基金 教育部博士点基金项目(20096102110027) 航天科技创新基金项目(CASC201104)
关键词 智能运输系统 状态决策 模糊意图模型 交通控制 粗糙集 多车道环境 ITS state decision-making fuzzy intention model traffic control rough set multi-lane environment
  • 相关文献

参考文献11

  • 1马永锋,项乔君,陆键.基于交通流稳定距离的多车道信号平交口安全间距分析[J].中国公路学报,2010,23(3):83-88. 被引量:9
  • 2L(U) Wei,SONG Wei-guo,FANG Zhi-ming. Three-lane Changing Behaviour Simulation Using a Modified Optimal Velocity Model[J].Physica A:Statistical Mechanics and Its Applications,2011,(12):2303-2314.
  • 3KOWSHIK H,CAVENEY D,KUMAR P R. Provable Systemwide Safety in Intelligent Intersections[J].{H}IEEE Transactions on Vehicular Technology,2011,(03):804-818.
  • 4YU F,BISWAS S. Self-configuring TDMA Protocols for Enhancing Vehicle Safety with DSRC Based Vehicle-tovehicle Communications[J].{H}IEEE Journal on Selected Areas in Communications,2007,(08):1526-1537.
  • 5侯德藻.汽车纵向主动避撞系统的研究[D]{H}北京:清华大学,2005.
  • 6首艳芳,徐建闽.信号交叉口多目标动态决策模型及其优化方法[J].公路交通科技,2012,29(11):92-97. 被引量:21
  • 7BAI F,STANCIL D D. Toward Understanding Characteristics of Dedicated Short Range Communications (DSRC) from a Perspective of Vehicular Network Engineers[A].New York:Association of Computing Machinery,2010.329-340.
  • 8WAN Jia-huan,CHEN Xiu-wan,LIU Jing. Design of Network Monitoring System of Moving Goods in the Internet of Things Based on COMPASS[A].Beijing:Peking University,2011.1096-1099.
  • 9姚琛,罗霞,汉克.范少伦.基于粗集和神经网络耦合的短时交通流预测[J].公路交通科技,2010,27(11):104-107. 被引量:7
  • 10胡寿松;何亚群.粗糙决策理论与应用[M]{H}北京:北京航空航天大学出版社,2006.

二级参考文献34

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部