期刊文献+

关联小波神经网络与高斯混合模型说话人识别 被引量:1

Speaker Recognition Based on Gaussian Mixture Model Associated with Wavelet Neural Network
下载PDF
导出
摘要 针对GMM模型在进行说话人识别时对噪声敏感以及在分类方面存在的缺陷,提出了一种小波神经网络和GMM结合的说话人识别模型,把GMM输出的似然概率和小波神经网络的训练相关联,采用带动量的BP算法和EM算法对小波神经网络和GMM模型分别训练,使目标说话人模型似然概率达到最大,进而提高说话人识别的效果。实验结果表明,新模型兼具小波神经网络抗噪声性能、学习分类能力以及GMM对说话人特征的描述能力,在多种噪声背景下能有效的提高说话人识别效果。 The Gaussian Mixture Model (GMM) applied in the task of speaker recognition is very sensitive to noise and has some defects in the aspects of classification.To solve these problems,a new speaker recognition model combines Wavelet Neural Network (WNN) and GMM was put forward in this study.The new model has both of the WNN's ability of anti-noise,learning classification and GMM's ability of describing speakers charac teristics.To improve the speaker recognition performance,the new model integrated the GMM's output likelihood probability with the WNN training.By adopting the momentum BP algorithm and EM algorithm to train WNN and GMM respectively,the likelihood probability in the new model was maximized.Experiments showed that the new model presented in this paper could effectively improve the speaker recognition performance in a variety of noise backgrounds.
出处 《探测与控制学报》 CSCD 北大核心 2013年第6期65-70,共6页 Journal of Detection & Control
基金 国家自然科学基金项目资助(60872113)
关键词 信号处理 语音识别 说话人识别 小波神经网络 高斯混合模型 signal processing speech recognition speaker recognition wavelet neural network (WNN) Gaussian mixture model (GMM)
  • 相关文献

参考文献13

  • 1Danko Komlen,Tomislav Lombarovic. Text Independent Speaker Recognition Using LBG Vector Qtantization[A].2011.23-27.
  • 2Reynodls D,Rose R. Robust text-independent speaker identification using Gaussian mixture speaker models[J].{H}IEEE Transactions on Speech and Audio Processing,1995,(1):72-83.
  • 3Campbell W,Campbell M,Gleason J P. Speaker verification using support vector machines and high-level features[J].IEEE Transactions on Audio Speech and Language Processing,2007,(7):2085-2094.
  • 4Tan J D,Ting H N. Malay Speaker Identification Using Neural Networks[A].Nanjing:IEEE,2011.476-479.
  • 5Tobias May,Steven van de Par,Armin Kohlrausch. Noise-Robust Speaker Recognition Combining Missing Data Techniques and Universal Background Modeling[J].IEEE trans on audio speech and language processing,2012,(1):108-121.
  • 6Ming Ji,Timothy J,Hazen. Robust speaker recognition in noisy conditions[J].IEEE trans on audio speech and language processing,2007,(5):1711-1723.
  • 7周燕,胡志峰.基于免疫聚类的RBF网络在说话人识别中的应用[J].声学技术,2010,29(2):184-187. 被引量:3
  • 8Yegnanarayana B,Kishore S P. AANN:an alternative to GMM for pattern recognition[J].{H}NEURAL NETWORKS,2002,(3):459-469.
  • 9陈存宝,赵力.嵌入自联想神经网络的高斯混合背景模型说话人确认[J].应用科学学报,2010,28(1):38-43. 被引量:2
  • 10白莹,赵振东,戚银城,王斌,郭建勇.基于小波神经网络的与文本无关说话人识别方法研究[J].电子与信息学报,2006,28(6):1036-1039. 被引量:7

二级参考文献49

  • 1俞一彪,王朔中.基于互信息匹配模型的说话人识别[J].声学学报,2004,29(5):462-466. 被引量:8
  • 2刘韬,王耀才,王致杰.一种基于人工免疫系统的聚类算法[J].计算机工程与设计,2004,25(11):2051-2053. 被引量:14
  • 3张邦礼,李银国,曹长修.小波神经网络的构造及其算法的鲁棒性分析[J].重庆大学学报(自然科学版),1995,18(6):88-95. 被引量:21
  • 4CAMPBELL J P. Speaker recognition: a tutorial[J]. Proceedings of the IEEE, 1997, 85(9): 1437-1462.
  • 5BIMBOT F, BONASTRE J F, FREDOUILLLE C, GRAVIER G, IVAN M C, MEIGNIER S, MERLIN T, JAVIER O G, DIJANA P D, REYNOLDS D A. A tutorial on text-independent speaker verification[J]. EURASIP Journal on Applied Signal Processing, 2004(4): 430-451.
  • 6REYNOLDS D A, ROSE R C. Robust text-independent speaker identification using Gaussian mixture models[J]. IEEE Transaction Speech Audio Processing, 1995, 3(1): 72-83.
  • 7REYNOLDS D A, QUATIERI T, DUNN R. Speaker verification using adapted Gaussian mixture models[J]. Digital Signal Processing, 2000, 10(1): 19-41.
  • 8KWON S, NARAYANAN S. Robust speaker identification based on selective use of feature vectors[J]. Pattern Recognition Letters, 2007, 28(1): 85-89.
  • 9CAMPBELL W M, STURIM D E, REYNOLDS D A. SVM based speaker verification using a GMM supervector kernel and NAP variability compensation[C]//Proceedings of ICASSP, Toulouse, France, 2006: 97-100.
  • 10YIN Shouchun, ROSE R, KENNY P. A joint factor analysis approach to progressive model adaptation in text-independent speaker verification[J]. IEEE Transaction on Audio, Speech and Language Processing, 2007, 15(7): 1999-2010.

共引文献70

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部