期刊文献+

基于目标分割与SVM的人数统计 被引量:4

People Counting Based on Object Segmentation and SVM
下载PDF
导出
摘要 该文实现了垂直摄像头下的实时人数统计。为减少场景中伪目标区域对人头检测的影响,首先利用背景建模法提取前景目标,并根据发色信息筛选前景目标。然后采用线性SVM训练得到的头部分类器识别头部,并将头部中心点作为运动人体的特征点,利用最近邻匹配法进行数据关联,完成行人的跟踪计数。不同场景下的视频测试结果表明,该方法能较准确地实现人数统计。 This paper achieves real-time people counting in video sequences captured with vertical camera . To reduce the impact for head detection by spurious objects , firstly, using background modeling method to extract foreground objects , and for further select based on hair color information , then using linear support vector machine(SVM) training a classifier to recognize the head , and the head center as a feature point of the moving for data association by the nearest neighbor matching method , to complete pedestrians track and count . Testing in different scenes , the results show that this method can achieve people counting accurately .
出处 《杭州电子科技大学学报(自然科学版)》 2013年第6期86-90,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 人数统计 目标分割 支持向量机 最近邻匹配法 people counting object segmentation support vector machine nearest neighbor matching
  • 相关文献

参考文献5

  • 1Kim Byeoung su, Lee Gwang Gook, Yoon Ja Young. A method of counting pedestrian in crowded scenes [ C ]. Berlin: Spfinger,2008:1 117 - 1 126.
  • 2Lee Gwang Cook, Kim Byeoung su, Kim Whoi Yul. Automatic Estimation of Pedestrian Flow [ EB/OL ]. hap:// ieeexplore, ieee. org/xpls/abs_all, jsp? arnumber = 4357536,2013 -09 - 30.
  • 3Vincent Rabaud, Serge Belongie. Counting crowded moving objects [ C ]. Washington: IEEE Computer Society,2006:705 -711.
  • 4Dalai N, Triggs B. Histograms of Oriented Gradients for Human Detection [ C ]. Washington: IEEE Computer Society, 2005:886 - 893.
  • 5潘浩,高枝宝,何小海,殷俊琳.基于计算机视觉的公交系统人流量检测算法[J].计算机工程,2007,33(11):216-218. 被引量:8

二级参考文献6

  • 1郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 2Liu X,Tu P H,Rittscher J,et al.Detecting and Counting People in Surveillance Applications[C]//Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance.2005:306-311.
  • 3Sonka M,Hlavac V,Boyle R.Image Processing Analysis and Machine Vision[M].2^nd ed.Thomson Learning an PPTPH,2001:80-82.
  • 4冈萨雷斯.数字图像处理[M].第2版.阮秋琦,阮宇智,译.北京:电子工业出版社,2004:441-444.
  • 5Li Shixiong.Multi-faces Location in Color Image[D].Concordia University,2002
  • 6Bradski G R,Clara S.Computer Vision Face Tracking For Use in a Perceptual User Interface[J].Intel Technology Journal,1998,2(1-4):1-15.

共引文献7

同被引文献22

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部