期刊文献+

The stationary solution of a random dynamical model

The stationary solution of a random dynamical model
下载PDF
导出
摘要 This paper studies the stationary probability density function(PDF) solution of a nonlinear business cycle model subjected to random shocks of Gaussian white-noise type. The PDF solution is controlled by a Fokker–Planck– Kolmogorov(FPK) equation, and we use exponential polynomial closure(EPC) method to derive an approximate solution for the FPK equation. Numerical results obtained from EPC method, better than those from Gaussian closure method, show good agreement with the probability distribution obtained with Monte Carlo simulation including the tail regions. This paper studies the stationary probability density function(PDF) solution of a nonlinear business cycle model subjected to random shocks of Gaussian white-noise type. The PDF solution is controlled by a Fokker–Planck– Kolmogorov(FPK) equation, and we use exponential polynomial closure(EPC) method to derive an approximate solution for the FPK equation. Numerical results obtained from EPC method, better than those from Gaussian closure method, show good agreement with the probability distribution obtained with Monte Carlo simulation including the tail regions.
出处 《Theoretical & Applied Mechanics Letters》 CAS 2014年第1期50-57,共8页 力学快报(英文版)
基金 supported by the National Natural Science Foundation of China(11302157) Fundamental Research Funds for the Central Universities(K5051370008) Chinese-Serbian Science&Technology Cooperation(2-14)
关键词 Gaussian white-noise business cycle stationary solution Gaussian white-noise business cycle stationary solution
  • 相关文献

参考文献18

  • 1T. E Cooley. Frontiers of Business Cycle Research. Princeton University Press, New Jersey (1995).
  • 2P. Krugman. Macroeconomics. Worth Publishers, New York (2009).
  • 3S. J. Rachev, M. Hochstotter, E J. Fabozzi, et al. Probability and Statistics for Finance. John Wiley & Sons, Inc. Hoboken, New Jersey (2010).
  • 4C. Soize. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. World Scientific Publishing Company, Singapore (1994).
  • 5W. Li, W. Xu, J. E Zhao, et al. Stochastic stability and bifurcation in a macroeconomic model. Chaos, Sol#on & Fractals 31, 702-711 (2007).
  • 6W. Li, W. Xu, J. F. Zhao, et al. First-passage and its control in a macroeconomic model. Far East Journal of Applied Mathematics 28, 1-16 (2008).
  • 7S. Li, Q. Li, J. R. Li, et al. Chaos prediction and control of Goodwin's nonlinear accelerator model. Nonlinear Analysis: Real World Applications 12, 1950-1960 (2011).
  • 8J. R. Li, Z. Z. Ren, Z. R. Wang. Response of nonlinear random business cycle model with time delay state feedback. Physica A: Statistical Mechanics and its Application 23, 5844-5851 (2008).
  • 9J. B. Roberts, P. D. Spanos. Random Vibration and Statistical Linearization. Dover Publications Inc., Mineola (2003).
  • 10E. J. Hinch. Perturbation Methods. Cambridge University Press, Cambridge (1991).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部