期刊文献+

蓖麻愈伤组织对铜的抗性研究(英文)

Study on Cu Resistance of Ricinus communis L. Callus
下载PDF
导出
摘要 [目的]研究铜胁迫下蓖麻愈伤组织的增殖及其铜吸收作用。[方法]将配制成不同浓度的CuSO4·5H2O水溶液分别加入愈伤组织继代培养基,接种愈伤组织,计算出愈伤组织对铜的抗性指数。并通过火焰原子吸收光谱法测定愈伤组织铜含量。[结果]铜浓度60 mg/L条件下,愈伤组织的增长受到抑制,抗性指数仅为33.87%;铜浓度40 mg/L时,愈伤组织呈淡黄色,生长较快,抗性指数达到61.29%,并且这种抗性可以保持至连续继代培养6周之后。培养至第4周,铜浓度分别在10、20、30、40 mg/L各处理的抗性指数都高于第3周,各处理愈伤组织铜含量依次为0.33、0.54、1.16、1.40 mg/g。[结论]培养基铜含量40 mg/L可作为筛选铜抗性蓖麻愈伤组织的临界值。 [Objective] The article studies the growth and Cu absorption of Ricinus communis L. callus under Cu stress. [Method] CuSO4.5H20 solutions with different Cu concentrations were added to callus subculture medium; callus was inoculated and Cu resistance index of callus was worked out. Cu content in callus was deter- mined with the method of Varian AA240FS. [Result] With the Cu concentration at 60 mg/L, the growth of callus was inhibited, its Cu resistance index was only 33.87%. With the Cu concentration at 40 mg/L, callus was faint yellow in color, and grew rapidly with its Cu resistance index at 61.29%. Such high level resistance could remain the same after six week after continuous subculture. In the 4t week of culture, Cu resistance index in treatments with Cu concentrations at 10, 20, 30, 40 mg/L was higher than that in the 3rd week, and the content of Cu in callus of the treatments was 0.33, 0.54, 1.16, 1.40 mg/g respectively. [Conclusion] Cu con- centration at 40 mg/L in culture medium can be the threshold for selecting Cu re- sistance R. communis callus.
出处 《Agricultural Science & Technology》 CAS 2013年第12期1707-1709,1791,共4页 农业科学与技术(英文版)
基金 Supported by General Program of National Natural Science Foundation of China(41371470) Key Program of Hubei Natural Science Foundation(2011CDA037) Students’Sci-Tech Innovation Program of Hubei Polytechnic University(2012cx23)~~
关键词 蓖麻 铜抗性愈伤组织 筛选 Ricinus communis L. Cu resistance callus ; Selection
  • 相关文献

参考文献13

  • 1KUMAR NPBA,DUSHENKOV V,MO-TTO H. Phytoextraction:The use of plant to remove heavy metals from soils[J].Environment Science Technol-ogy,1995,(5):1232-1238.
  • 2ANA M,BARBARA L,WOLFRAM MK. Complexation and toxicity of cop-per in higher plants.II. Different mecha-nisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlas-pi caerulescens(Ganges Ecotype)[J].{H}Plant Physiology,2009.715-731.
  • 3ANTHONY GK,BALWANT SNB. The role of low molecular weight ligands in nickel hyperaccumulation in Hybanthus floribundus subspecies floribundus[J].{H}PLANT BIOLOGY,2010.1143-1150.
  • 4CASTILLO OS,DASGUPTA-SCHU-BERT N,ALVARADO CJ. The ef-fect of the symbiosis between Tagetes erecta L.(marigold)and Glomus in-traradices in the uptake of Copper(II)and its implications for phytoremedia-tion[J].New Biotechnology,2011,(1):156-164.
  • 5CHEN KF,YEH TY,HSU YH. The phytoattenuation of the soil metal con-tamination:the effects of plant growth regulators(GA(3)and IAA)by employ-ing wetland macrophyte vetiver and en-ergy plant sunflower[J].Desalination and Water Treatment,2012,(1/3):144-152.
  • 6XIE WJ,WANG HY,XIA JB. Influ-ence of N,P and K application on Zea mays L.growth and Cu and Pb accumu-lation[J].{H}PLANT SOIL AND ENVIRONMENT,2011,(3):128-134.
  • 7YANG LX,LUO CL,CHEN YH. Copper-resistant bacteria enhance plant growth and copper phytoextrac-tion[J].International Journal of Phytore-mediation,2013,(6):573-584.
  • 8MELINDA AK,HITOSHI S,MATTHEW JM. Investigation of heavy metal hyperaccumulation at the cellular level:development and characterization of thlaspi caerulescens suspension celllines1[J].{H}Plant Physiology,2008.2006-2016.
  • 9郑进,康薇.湖北铜绿山古铜矿野生蓖麻重金属含量研究[J].黄石理工学院学报,2009,25(1):36-40. 被引量:20
  • 10康薇,郑进.蓖麻——一种新的铜超积累植物[J].安徽农业科学,2011,39(3):1449-1451. 被引量:24

二级参考文献33

  • 1傅福勤.特用油料作物-蓖麻[M].北京:中国环境科学出版社,2002.
  • 2陆晓怡,何池全.蓖麻对重金属的耐性与吸收积累研究[C].第二届全国环境化学学术报告会论文集,2004,2:8-10.
  • 3Adriano DC. Trace Elements in the Terrestrial Enviroment [ M ]. New York : Springer Verlag, 1986
  • 4Brooks RR. Plants that hyperaccumulate heavy metals [ C]. Wallinging,UK: CAB International. 1998, 380
  • 5Baker AJM, McGrath SP, Reeves RD, et al. Metal hyperaccumulator and plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal - polluted soils [ C ]. In: Terry N, Banuelos G. (Eds.), Phytoremediation. CRC Press, Boca,FL,1999,85 - 107
  • 6MINER G S,GUTIERREZ R,KING L D.,Soil factors affecting plant concenlmtions of cadmium,copper and zinc in sludge-amended soil[J].Journal of Enviromental Quality,1997.26:989-994.
  • 7KUMAR N P B A,DUSHENKOV V,MOTTO H,et al.Phvtoextraction:The use of plant to remove heavy meIals from soils[J].Environment Science Technology,1995,29(5):1232-1238.
  • 8ANA M,BARBARA L,WOLFRAM M K,et al.Complexation and txrdcity of copperin highPr plants.Ⅱ.Differenl mechanisms for copper versus cadmium detoxi cation in the copper-sensitive cadmium/zinc hyperaccumulater Thlaspi caendescens(Ganges Ecotype)[J].Plant Physiology,2009,151:715-731.
  • 9BOJEONG K,MCBRIDE M B.Phvlotoxic Effects of Cu and Zn on soybeans Grown in Field-Aged Soils:Their Additive and Interactive Actions[J].Journal of Envimnmental Quality,2009.38:2253-2259.
  • 10HASSlNEN V H,TUOMAINEN M,PERANIEMI S,et al.Metallothioneins 2 and 3 contribute to the metaladapted phenotype but are not direetly linked to Zn accumulation in the metal hylperaccumulator.Thlaspi caerulesCens[J].Journal of Experimental Botmay,2009,60:187-196.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部