期刊文献+

基区As组分缓变对InP/InGaP/GaAsSb/InP DHBT热电性能的影响

Effect of As Composition Gradient on Thermoelectric Characteristics of InP /InGaP /GaAsSb /InP Double Heterojunction Bipolar Transistor
下载PDF
导出
摘要 基于非等温能量平衡传输模型,利用SILVACO/ATLAS数值计算软件,研究了四种不同基区As组分的缓变对InP/InGaP/GaAsSb/InP双异质结双极晶体管(DHBT)热电特性的影响。结果表明,As组分缓变的引入改善了器件的直流增益和特征频率,但同时器件内部温度也随之升高。直流增益和温度增加的速率随As组分缓变范围增大而增大,特征频率增加的速率随As组分缓变范围的增加而迅速减小。基区As组分为0.57至0.45由发射区侧到集电区侧线性分布的器件具有较高的增益和特征频率及较低的器件内部温度,增益、特征频率与器件内部温度得到了优化。 Based on the nonisothermal energy balance model and used the SILVACO/ATLAS device simulator, the effects of four different types of As composition gradient of the base on the thermoelectric characteristics of InP/InGaP/GaAsSb/InP double heterojunction bipolar transistor (DHBT) were investigated. The results show that the current gain and cut-off frequency are improved due to the introduction of As composition gradient, but the temperature is also raised. The increasing rates of the current gain and temperature are higher with a larger percentage range of As composition, while the increasing rate of cut- off frequency is lower. The device with the percentage of As composition between 0.57 and 0.45 from emitter side to collector side has a relative high current gain, cut-off frequency and low bulk temperature, which presents a good trade-off among current gain and cut-off frequency as well as bulk temperature distribution.
出处 《半导体技术》 CAS CSCD 北大核心 2014年第2期119-123,共5页 Semiconductor Technology
基金 浙江省自然科学基金资助项目(LY12F04003) 现代通信与网络系统科技创新自主设计项目(2010R50011-13)
关键词 INP INGAP GAASSB INP 双异质结双极晶体管(DHBT) 缓变发射结 缓变基区 热电特性 InP/InGaP/GaAsSb/InP double heterojunction bipolar transistor (DHBT) graded emitter junction gradient base thermoelectric characteristic
  • 相关文献

参考文献3

二级参考文献37

  • 1简广德,董家齐.托卡马克等离子体中动力剪切阿尔芬波不稳定性的数值研究[J].物理学报,2005,54(4):1641-1647. 被引量:3
  • 2王建国,李有宜,李建刚.HT-6M中性束注入加热理论分析[J].物理学报,1995,44(1):92-97. 被引量:5
  • 3王少杰,邱励俭.中性束注入产生的非麦氏分布对D-T聚变反应率的影响[J].物理学报,1996,45(9):1492-1500. 被引量:2
  • 4Fu J, Bach K. A simple electrical approach to extracting the difference in bandgap across neutral base for SiGe HBT’s. Materials Science in Semiconductor Processing, 2005, 8: 301.
  • 5Cressler J D. SiGe FIBT technology: a new contender for Si based RF and microwave circuit applications. IEEE Trans Microw Theory Tech, 1998, 46(5): 572.
  • 6Miura M, Shimamoto H, Oda K, et al. Ultra-low-power SiGe HBT technology for wide-range microwave applications. IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Monterey, USA, 2008: 129.
  • 7Zhang W, Yang J, Liu H, et al. The temperature dependence of DC characteristics and its implication in microwave power Si/SiGe/Si HBT’s. International Conference on Microwave and Milliwave Technology (ICMMR/T), Beijing, China, 2004: 594.
  • 8Rinaldi N. Small-signal operation of semiconductor devices including self-heating with application to thermal characterization and instability analysis. IEEE Trans Electron Devices, 2001, 48(2): 323.
  • 9Jin Dongyue, Zhang Wanrong, Shen Pei, et al. Multi-finger power SiGe HBT with non-uniform finger spacing. Chinese Journal of Semiconductors, 2007, 28(10): 1527.
  • 10Lee J G, Oh T K, Kim B, et al. Emitter structure of power heterojunction bipolar transistor for enhancement of thermal stability. Solid State Electron, 2001, 45(1): 27.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部