期刊文献+

FPGA工作温升与运行程序的关系 被引量:1

Relation of FPGA Working Temperature Rise and the Program
下载PDF
导出
摘要 现场可编程门阵列(FPGA)的低成本和高度灵活性,使其在嵌入式系统中占据了重要的地位。FPGA的工作温升与运行程序有很强的依赖关系。主要研究了时钟频率和资源利用率两个方面对FPGA工作温升的影响,分别利用红外热像仪和K型热电偶测量了FPGA在真空和大气中的工作温升。采用锁相环(PLL)进行倍频产生8组输出频率进行时钟测量。资源利用率主要通过控制逻辑单元的数目来实现。最后采用阿尔特拉(Altera)公司的Power Play EPE软件对FPGA在不同情况下的功耗进行了估算。通过对实验结果的分析和比较,发现随着时钟频率增加,FPGA表面温度不断增大;随着资源利用率(逻辑单元数目)的增加,温度也随之增长。通过EPE软件估算出功耗与时钟频率、逻辑单元的数目均成正比例关系。 Field programmable gate array (FPGA) plays a vital role in the embedded system on account of its low cost and high flexibility. The working temperature of the FPGA is dependent on the program. In the experiments, the clock frequency and the utilization rate of resources are considered as the important factors, which critically effect the FPGA working temperature rise. FPGA working temperature rise on vacuum and in the atmosphere was measured using the infrared imager and K-type thermocouple, respectively. The phase locked loop (PLL) for the frequency was used to generate eight sets of the output frequency. The utilization rate of resources has the been controlled by the number of logic elements. Finally, the power consumption of the FPGA in different cases was estimated based on Altera Power Play EPE software. By analyzing and comparing the experimental data, the results show that the surface tem- perature of FPGA rises with the increase of clock frequency and utilization rate of resources ( the number of logical element). The EPE software simulation results show that the power consumption linearly increases with the clock frequency and logical element number, respectively.
出处 《半导体技术》 CAS CSCD 北大核心 2014年第2期142-146,共5页 Semiconductor Technology
基金 国家自然科学基金资助项目(61376077 61201046 61204081) 北京市自然科学基金资助项目(4132022 4122005) 广东省战略新兴产业项目基金资助项目(2012A080304003)
关键词 现场可编程门阵列(FPGA) 温度 红外热像仪 频率 功耗 field programmable gate array (FPGA) temperature infrared imager frequency power consumption
  • 相关文献

参考文献7

  • 1ZICK K M, HAYES J P. On-line sensing for healthier FPGA systems [C] //Proceedings of the 18'" Annual ACM/SIGDA International Symposium on Field Program- mable Gate Arrays. New York, USA, 2010: 239-248.
  • 2ZHANG X, .IOU1N1 W, EERAY P, et al. Tempera- ture-power consumption relationship and hot-spot migra- tion for FPGA-based system [ C] //Proceedings of 2010 IEEE/ACM International Conference on Cyber, Physical and Social Computing (CPSCom) , Green Computing and Communications (GreenCom). Hangzhou, China, 2010: 392-397.
  • 3HERRERA-ALZU I, SANCHEZ M A, LOPEZ-VALLEJO M, et al. Experimental methodology for power characteriza- tion of FPGAs [C] //Proceedings of the 15'h IEEE Inter- national Conference on Electronics, Circuits and Systems, 2008 ICECS. S Julien's, France, 2008: 582-585.
  • 4ZHANG C S, KALLAM R, DECEUSTER A, et al. A thermal-mechanical coupled finite element model with experimental temperature verification for vertically stacked FPGA[J] Microeleetronie Engineering, 2012, 9l: 24-32.
  • 5NOWROZ A, REDA S. Thermal and power characterization of field-programmable gate arrays [ C] //Proceedings of the 19'h ACM/SIGDA International Symposium on Field Pro- grammable Gate Arrays. San Jose, USA, 2011: 111-114.
  • 6王诚,吴继华,范丽珍,等.AlteraFPGA/CPLD设计(基础篇)[M].北京:人民邮电出版社,2009:3-29.
  • 7COCHRAN R, NOWROZ A N, REDA S. Post-silicon power characterization using thermal infrared emissions [ C] ffProceedings of the 16'h ACM/IEEE Intcrnational Symposium on Low Power Electronics and Design. Aus- tin, USA, 2010: 331-336.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部