期刊文献+

基于最大内聚度基准的加权投票聚类集成 被引量:3

Weighted voting clustering ensemble based on maximum cohesion
原文传递
导出
摘要 提出一种基于投票的聚类集成方法.通过分析聚类结构与聚类准确率的关系,将内聚度最高的聚类成员作为重新标记的基准以实现簇标记的统一;同时,根据数据点在不同聚类成员中与所划分簇中心的距离确定权值,最终实现加权投票.实验结果表明,该算法在准确率和稳定性上均有较大提高. A voting-based clustering ensemble method is presented. By analyzing the relationship between the clustering structure and accuracy, the highest cohesive cluster member is considered as the benchmark of relabel algorithm to unify cluster labels. Then the voting weights are determined by the distance from cluster centers which data points in different cluster members are divide into. The experimental results show that, the proposed algorithm is greatly improved in accuracy and stability.
作者 陈晓云 陈刚
出处 《控制与决策》 EI CSCD 北大核心 2014年第2期236-240,共5页 Control and Decision
基金 国家自然科学基金项目(71273053)
关键词 聚类集成 加权投票 内聚度 clustering ensemble; weighted voting; cohesion
  • 相关文献

参考文献13

  • 1Topchy A,Jain A K, Punch W. A mixture model for clustering ensembles[C]. Proc of the 4th SIAM Int Conf on Data Mining. Lake Buena Vista, 2004: 379-390.
  • 2Fred A,Jain A K. Combining multiple clusterings using evidence accumulation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
  • 3Strehl A, Ghos 1. Cluster ensembles-a knowledge reuse framework for combining multiple partitions[J].J of Machine Learning Research, 2002(3): 583-617.
  • 4Topchy A,Jain A K, Punch W. Clustering ensembles: Models of consensus and weak partitions[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1866-1881.
  • 5Dudoit S, FridlyandJ. Bagging to improve the accuracy of a clustering procedure[J]. Bioinformatics, 2003, 19(9): 1090-1099.
  • 6Fischer B, BuhmannJ M. Bagging for path-based clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(11): 1411-1415.
  • 7Topchy A, Law M,Jain A K, et al. Analysis of consensus partition in clustering ensemble[C]. Proc of the IEEE Int Conf on Data Mining 2004. Brighton, 2004: 225-232.
  • 8唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 9Ayad H G, Kamel M S. Cumulative voting consensus method for partitions with a variable number of clusters[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008,30(1): 160-173.
  • 10李春生,王耀南.基于模糊简单多数票法则的模糊聚类组合模型[J].控制与决策,2010,25(3):394-398. 被引量:1

二级参考文献30

  • 1Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.
  • 2Wu K L, Yang M S. Alternative C-means custering algorithm[J]. Pattern Recognition, 2002, 35 (10) 2267-2278.
  • 3Nikhil R Pal, Kuhu Pal, James M Keller, et al. A possibilistic fuzzy c-means clustering algorithm [J]. IEEE Trans on Fuzzy Systems, 2005, 13(1): 517-530.
  • 4Yang M S, Wu K L. Unsupervised possibilistie clustering[J]. Pattern Recognition, 2006, 39(1): 5-21.
  • 5Gustafson D, Kessel W. Fuzzy clustering with a fuzzy covariance matrix[C]. Proc of IEEE CDC. San Diego: IEEE Explore, 1979: 761-766.
  • 6Dave R N. Generalized fuzzy C-shell clustering and detection of circular and elliptical boundaries[J]. Pattern Recognition, 1992, 25(4): 639-641.
  • 7Evgenia Dimitriadou, Andreas Weingessel, Kurt Hornik. A combination scheme for fuzzy clustering[J]. Int J of Pattern Recognition and Artificial Intelligence, 2002, 16(4): 901-912.
  • 8Gordon A D, Vichi M. Fuzzy partition models for fitting a set of partitions[J]. Psychometrika, 2002, 66 (2) : 229-248.
  • 9Albert H R Ko, Robert Sabourin, Alceu de Souza Britto Jr, et al. Pairwise fusion matrix for combining classifiers[J]; Pattern Recognition, 2007, 40(8) : 2198- 2210.
  • 10Khan S S, Ahmad A. Cluster center initialization algorithm for k-means clustering [ J ]. Pattern Recognition Letters, 2004, 25(11):1293-1302.

共引文献94

同被引文献22

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部