期刊文献+

基于相对核和精确度的灰数排序方法 被引量:27

The ranking method of grey numbers based on relative kernel and degree of accuracy
原文传递
导出
摘要 研究区间灰数的排序方法,分析已有排序方法的特点和优劣.为了更好地切合实际问题,考虑到灰数的取值论域,基于信息保留原则建立了普通区间灰数到标准灰数的投影法则;依据投影得到的标准灰数提出了相对核和精确度的概念,在此基础上给出了灰数的排序方法,克服了已有排序方法的不足,且使相同灰数的排序区分度在不同的应用背景下有不同的体现,有助于决策者进行分析.最后,通过算例验证了所提出方法的可行性和优越性. The ranking method of interval grey numbers is researched. Firstly, the merits and demerits of the existing methods are analyzed. Then, in order to suit the actual application, based on grey numbers' universe of discourse and the principle of information persisting, the projection rule from ordinary interval grey numbers to standard grey numbers in universe of discourse [0,1 ] is designed. Moreover, the concepts of relative kernel and degree of accuracy are proposed aiming at the standard grey number. Based on these concepts, the ranking method of grey numbers is presented, which overcomes the shortages of existing ones. The discriminations among the same grey numbers in different application background are different, which are conductive to analyze for decision makers. Finally, examples show the feasibility and superiority of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2014年第2期315-319,共5页 Control and Decision
基金 国家自然科学基金项目(71171112 71171113 70701017 71271226) 国家社科重大基金项目(10zd&014) 国家社科重点基金项目(12AZD102) 南京航空航天大学引进人才科研启动基金项目 中央高校基本科研业务费专项资金项目
关键词 灰数 投影 相对核 精确度 grey numbers; projectiom relative kemel; degree of accuracy
  • 相关文献

参考文献17

  • 1Song P,Liang J Y,Qian Y H. A two-grade approach to ranking interval data[J].{H}Knowledge-based systems,2012,(03):234-244.
  • 2Senguta A,Pal T K. On comparing interval numers[J].{H}European Journal of Operational Research,2000,(01):28-43.
  • 3Saeidifar A. Application of weighting functions to the ranking of fuzzy numbers[J].{H}Computers & Mathematics with Applications,2011,(05):2246-2258.
  • 4Sevastianov P. Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory[J].{H}Information Sciences,2007,(21):4645-4661.
  • 5Deng J L. Control problems of grey systems[J].Systems&Control Letters,1982,(05):288-294.
  • 6刘思峰;党耀国;方志耕.灰色系统理论及其应用(Liu S F,Dang Y G,Fang Z G,et al.Grey system theory and its application[M].5th ed.Beijing:Science Press,2010:5-30.)Grey system theory and its application[M].5th ed.Beijing:Science Press,2010:5-30.)[M].第5版.北京:科学出版社,20105-30.
  • 7Yang Y J,Robert J. Grey sets and greyness[J].{H}Information Sciences,2012,(01):249-264.
  • 8Shih C S,Hsu Y T,Yeh J. Grey number prediction using the grey modification model with progression technique[J].{H}Applied Mathematical Modeling,2011,(03):1314-1321.
  • 9Jiang C,Han X,Liu G R. A nonlinear interval number programming method for uncertain optimization problems[J].{H}European Journal of Operational Research,2008,(01):1-13.
  • 10方志耕,刘思峰,陆芳,万军,刘斌.区间灰数表征与算法改进及其GM(1,1)模型应用研究[J].中国工程科学,2005,7(2):57-61. 被引量:57

二级参考文献50

共引文献187

同被引文献218

引证文献27

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部