期刊文献+

丢失数据下的条件极大似然辨识 被引量:4

Conditional maximum likelihood identification under missing data
原文传递
导出
摘要 针对仿射结构形式在丢失数据下的条件极大似然辨识问题,首先引入交换矩阵将原随机矢量分解成观测和丢失部分;然后确定出观测数据在丢失数据下的条件均值和条件方差,以此建立条件似然函数;进而从理论上给出了条件极大似然函数关于未知参数矢量、未知白噪声方差值和丢失数据的求导公式,并从工程上给出一种可分离的优化算法;最后通过仿真算例验证了该辨识方法的有效性. To the conditional maximum likelihood identification problem of an affine structure under missing data, a permutation matrix is used to divide a random vector into observed and missing parts. Then conditional mean and covariance under missing data are set up to obtain a conditional likelihood function. In the theory, expressions of the derivatives about the conditional maximum likelihood function on the unknown parameter vector, unknown white noise variance and missing data are derived. A separable optimum algorithm is given to be applied in engineering. Finally, simulation results show the effectiveness of the identification method.
作者 王建宏
出处 《控制与决策》 EI CSCD 北大核心 2014年第2期358-362,共5页 Control and Decision
基金 江西省科技厅青年科学基金项目(20122BAB211012)
关键词 条件极大似然 丢失数据 交换矩阵 优化算法 conditional maximum likelihood missing data; permutation matrix optimum algorithm
  • 相关文献

参考文献12

  • 1Ljung L. System identification:Theory for the user[M].Upper Saddle River:Prentice Hall Press,1999.317-329.
  • 2Pintelon R,Schoukens J. System identification:A frequency domain approach[M].{H}New York:IEEE Press,2001.208-222.
  • 3Boyd S,Vandenberghe L. Convex optimization[M].{H}Cambridge,UK:Cambridge University Press,2008.560-578.
  • 4Pintelon R. Frequency domain system identification with missing data[J].IEEE Trans of Automatic Control,2000,(02):364-368.
  • 5Pintelon R. Identification of continuous time systems with missing data[J].{H}IEEE Transactions on Instrumentation and Measurement,1999,(03):736-740.
  • 6Isaksson A. Identification of ARX models subject to missing data[J].IEEE Trans of Automatic Control,1993,(05):813-819.
  • 7Juan C Augero. Accuracy of linear multiple input multiple output models obtained by maximun likelihood estimation[J].{H}AUTOMATICA,2012,(04):632-637.
  • 8Jakob K. A design algorithm using external perturbation to improve iterative feedback tuning convergence[J].{H}AUTOMATICA,2011,(02):2665-2670.
  • 9Hakan Hjalmarsson,Brett Ninness. Least squares estimation of a class of frequency functions:A finite sample variance expression[J].{H}AUTOMATICA,2006,(02):589-600.
  • 10Juan C Augero. A virtual closed loop method for closed loop identification[J].{H}AUTOMATICA,2011,(08):1626-1637.

二级参考文献6

  • 1唐炜,史忠科,李洪超.飞机颤振模态参数辨识的频域广义整体最小二乘算法[J].控制与决策,2006,21(7):726-729. 被引量:5
  • 2Pintelon R,Sehoukens J.Frequency domain maximum likelihood estimation of linear dynamic errors-in-variables models[J].Automatica,2007,43(2):621-630.
  • 3Pintelon R.Frequency-domain subspace system identification using non-parameteric noise models[J].Automatica,2002,38 (8):1275-1311.
  • 4James P N.Scuter.Suboptimal estimation of the parameters of discrete systems in the presence of correlated noise[J].Electron.1972,17(8):411-412.
  • 5Beghelli S,Guiduzi R P.The Frish scheme in dynamic system identification[J].Automatics,1990,326 (8):171-176.
  • 6Boyd S,Vandenberghe L.Convex optimization[M].Cambridge University Press,2004.

共引文献3

同被引文献57

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部