期刊文献+

竖直圆管内空泡份额径向分布特性形成机制 被引量:2

Formation Mechanism of Radial Void Fraction Distribution of Bubbly Flow in A Vertical Circular Tube
原文传递
导出
摘要 在常温常压下,采用光纤探针测量方法对垂直上升大圆管中空气.水两相流动的空泡份额径向分布特性及形成机制进行研究。实验选用圆管直径为100mm,气相、液相折算速度的范围分别为0.004~0.053m/s和0.071-O.213m/s。结果表明空泡份额径向分布随着气.液流量的不同,呈现出“核峰”或“壁峰”型分布特点;通过分析气泡所受到的横向升力和壁面力,表明二者对气泡横向运动的综合作用是造成空泡份额径向分布呈现出“核峰”或“壁峰”型分布的主要原因。 The formation mechanism of radial void fraction distribution of gas-liquid two phase flow in a vertical circular tube was investigated experimentally by using an optical fiber probe under ambient temperature and pressure. Experiments were conducted in a tube with inner diameter of 100 ram, and with the gas and liquid superficial velocity covering the ranges of 0.0042-0.053 m.s~ and 0.071-0.213 m.sj, respectively. The results show that local void fraction shows a "core" or a "wall" peak distribution along the radius with different gas and liquid flow rates. The analysis of the wall force and lift force acting on a bubble shows that the two forces are of great importance in leading to a "core" or "wall" peak distribution of the void fraction due to their key role in determining the transverse movement of a bubble.
出处 《核动力工程》 EI CAS CSCD 北大核心 2014年第1期42-45,51,共5页 Nuclear Power Engineering
关键词 两相流 空泡份额 壁面力 升力 Two-phase flow, Void fraction, Wall force, Lift force
  • 相关文献

参考文献2

  • 1D. Lucas,E. Krepper,H.-M. Prasser.Use of models for lift, wall and turbulent dispersion forces acting on bubbles for poly-disperse flows[J].Chemical Engineering Science.2007(15)
  • 2Akio Tomiyama,Hidesada Tamai,Iztok Zun,Shigeo Hosokawa.Transverse migration of single bubbles in simple shear flows[J].Chemical Engineering Science.2002(11)

同被引文献15

  • 1陈凤,宋耀祖,陈民.电场作用下的气泡受力分析[J].工程热物理学报,2005,26(z1):146-148. 被引量:11
  • 2SHEN X Z, MISHIMA K, NAKAMURA H. Two-phase phase distribution in a vertical large diameter pipe[J]. Int. J. Heat Mass Transfer, 2005, 48 (1): 211-225.
  • 3OKAWA T, KATAOKA I, MORI M. Numerical simulation of lateral phase distribution in turbulent upward bubbly two-phase flow[J]. Nucl. Eng. Des., 2002, 213 (2/3): 183-197.
  • 4GIUSTI A, LUCCI F, SOLDATI A. Influence of the lift force in direct numerical simulation of upward/downward turbulent channel flow laden with surfactant contaminated microbubbles[J]. Chem. Eng. Sci., 2005, 60 (22): 6176-6187.
  • 5PANG M J, WEI J J, YU B. Numerical study of bubbly upflows in a vertical channel using the Euler-Lagrange two-way model[J]. Chem. Eng. Sci., 2010, 65 (23): 6215-6228.
  • 6YU B, KAWAGUCHI Y. Direct numerical simulation of visco-elastic drag-reducing flow: a faithful finite difference method [J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 116 ( 2/3 ) : 431- 466.
  • 7TABIB M V, ROY S A, JOSHI J B. CFD simulation of bubble column an analysis of interphase forces and turbulence models [J] Chemical Engineering Journal, 2008, 139 (8): 589-614.
  • 8LAIN S, BRODER D, SOMMERFELD M, et al. Modelling hydrodynamics and turbulence in a bubble column using the Euler-Lagrange procedure [J]. Int. J. Multiphase Flow, 2002, 28 (8): 1381-1407.
  • 9LEGENDER D, MAGNAUDET J. The lift force on a spherical bubble in a viscous linear shear flow [J]. J. Fluid Mech., 1998, 369: 81-126.
  • 10孙波,孙立成,幸奠川,田道贵,刘靖宇.竖直大圆管内界面面积浓度分布特性[J].化工学报,2012,63(6):1810-1815. 被引量:8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部