期刊文献+

基于模糊距离的核电厂瞬态分段识别方法 被引量:4

Transient Identification in Nuclear Power Plants Based on Transient Division and Fuzzy Euclidean Distance
原文传递
导出
摘要 近年来发展的核电厂瞬态识别技术,可为操纵员提供处于发展阶段的故障信息,有助于了解核电厂状态并及时采取相应的操作动作,保证核电厂的安全运行。将瞬态过程曲线分为两段,前段利用聚类方法用于快速识别,后段利用提取的瞬态过程的特征进行更准确的识别。利用待识别瞬态与参考瞬态间的模糊距离描述二者的相近程度,可以消除噪声等扰动的影响,并得到更符合认知习惯的结果。利用高温气冷堆核电厂仿真机的故障数据验证瞬态识别方法的有效性。 The transient identification techniques were recently developed to alert the operators about the faults in their early stages, therefore corrective actions can be taken in time to keep the safety of nuclear power plants. In this paper, the transients were split into two parts: the first part is identified by clustering method, while the other is identified by comparing three features of signals. The similarity between the on-line and the reference transients was described by Fuzzy Euclidean distance, which conforms to human understanding habits. The method was verified by simulator data of Pebble Bed Modular High Temperature Gas-cooled Reactor (HTR-PM) with Tsinghua University. It is shown that the transients can be correctly and quickly identified.
出处 《核动力工程》 EI CAS CSCD 北大核心 2014年第1期106-109,共4页 Nuclear Power Engineering
关键词 瞬态识别 瞬态曲线分段 小波在线预处理 模糊距离 Transient identification' Transient division, Wavelet preprocessing, Fuzzy theory
  • 相关文献

参考文献8

  • 1Roverso D. Plant diagnostics by Transient Classification: The Aladdin Approach [J]. International Journal of Intelligent Systems, 2002, 17(8): 767-790.
  • 2Chang Y, Huang X, Hao Y, et al. Linear Representation and Sparse Solution for Transient Identification in Nuclear Power Plants [J]. IEEE Transactions on Nuclear Science, 2013, 60:319-327.
  • 3Medeiros J A C C, Schirru R. Identification of Nuclear Power Plant Transients Using the Particle Swarm Optimization Algorithm [J]. Annals of Nuclear Energy, 2008, 35:576-582.
  • 4Zio E, Baraldi P. Identification of Nuclear Transients Via Optimized Fuzzy Clustering [J]. Annals of nuclear Energy, 2005, 32(10): 1068-1080.
  • 5Schirru R, Martinez A S, Pereira C M N A, et al. Intelligent Soft Computing in Nuclear Engineering in Brazil [J]. Progress in Nuclear Energy, 1999, 35(3-4): 367-391.
  • 6Zio E, Baraldi P, Pedroni N. Selecting Features for Nuclear Transients Classification by Means of Genetic Algorithms[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1479-1493.
  • 7Nicolau A D S, Schirru R, Meneses A A M. Quantum evolutionary Algorithm Applied to Transient identification of a Nuclear Power Plant[J]. Progress in Nuclear Energy, 2011,53(1): 86-91.
  • 8Mol A, Almeida J, Pereira C, et al. Neural and Genetic-Based Approaches to Nuclear Transient Identification Including 'don't Know' Response [J]. Progress in Nuclear Energy. 2006, 48: 268-282.

同被引文献15

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部