摘要
在强连通竞赛图中外弧泛圈顶点的基础上,研究了强连通竞赛图中外弧4泛顶点的数目.利用路收缩的方法,证明了下面结论:设T是一个s-强(s≥3)竞赛图,M是T中具有最小出度的顶点的集合,如果|M|≥3,则T至少包含s+2个外弧4泛顶点.
On the basis of out-arc pancyelic vertices in strong tournaments, the number of out-arc 4- pancyclic vertices in s-strong (s≥3) tournament were investigated. The following result is proved by using path-contracting method. Let T be a s-strong (s≥3) tournament, and let M be a set of some vertices with minimum out-degree. If I M≥ 3, then T contains at least s + 2 out-arc 4-pancyclic vertices.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2013年第6期606-609,共4页
Journal of North University of China(Natural Science Edition)
基金
国家自然科学基金(青年)资助项目(11201273
61202365
61202017)
山西省青年科技基金资助项目(2011021004)
关键词
竞赛图
圈
外弧
泛圈性
tournaments
cycles
out-arcs
pancyclicity