期刊文献+

基于LL-GPLVM的目标形状建模方法研究

Research on Target Shape Modeling Based on Local Linear Gaussian Process Latent Variable Model
下载PDF
导出
摘要 为实现利用二维图像对三维目标外观进行准确建模,提出了一种基于局部线性约束的高斯过程隐含变量模型(LL-GPLVM)的目标形状建模算法.该算法以形状作为目标特征表示,以半球形作为流形拓扑结构约束,用LL-GPLVM来完成目标视角流形学习.目标视角流形是一个概率模型,关于流形结构的先验知识以局部线性约束的方式引入,学习结果为数据与先验知识的平衡结果.对仿真数据的实验结果表明,该视角流形能准确地表示目标形状,建模精度高于现有算法. A multi-view target shape modeling method based on local linear gaussian process latent variable model (LL-GPLVM) was proposed which could learn a shape manifold from a set of 2D shapes for 3D target modeling. LL-GPLVM was used to learn a view manifold for the target, in which shape was used for feature representation, a hemisphere was used as topology constrain for manifold learning. The prior of the manifold structure was involved in manifold learning through local linear embedding, so the final manifold was the balanced result of data and topology prior, and was a probabilistic model. Experiment on synthetic data demonstrates the advantages of the proposed method over existing techniques.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第6期628-632,共5页 Journal of North University of China(Natural Science Edition)
关键词 流形学习 形状建模 GPLVM LL GPLVM 局部线性嵌入 manifold learning shape modeling gaussian process latent variable model LL-GPLVM local linear embedding
  • 相关文献

参考文献15

  • 1Bayesian S A. Filtering for tracking pose and location of rigid targets[C]. SPIE Signal Processing, Sensor Fusion, and Target Recognition, 2000: 160-171.
  • 2Mei X, Zhou S K, Wu H, et al. Integrated detection, tracking andrecognition for IR video-based vehicle classification[J]. Journal of Computers, 2007, 2(6): 18.
  • 3Park C, Jung S. SIFT-based object recognition for tracking in infrared imaging system [C]. 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Bussan, Korea, 2009 : 1-2.
  • 4Islam M Z, Lee W C. Shape based moving object tracking with particle filter [ C ]International Conference on Control, Automation and Systems (ICCAS), Seoul, Korea, 2008: 679-682.
  • 5Ross D A, Lim J, Lin R, et al. Incremental learning for robust visual tracking[J] International Journal of Computer Vision, 2008, 77(1): 125-141.
  • 6Kim T, Lee S, Paik J. Combined shape and feature- based video analysis and its application to non-rigidobject tracking [J]. IET Image Processing, 2011, 5 (1): 87-100.
  • 7Lee C S, Park S W. Tracking hand rotation and grasping from an IR camerausing cylindrical manifold embedding [C]. Proc. International Conference on Pattern Recognition (ICPR), 2010: 2612-2615.
  • 8Lawrence N. Probabilistic non-linear principal component analysis with gaussian process latent variable models[J]. Journal of Machine Learning Research, 2005(6): 1783 1816.
  • 9Urtasun R, Fleet J D, Geiger A, et al. Topologically constrained latent variable models[C]. Proceedings of the 25th International Conference on Machine Learning, 2008: 1080-1087.
  • 10Rivera S, Martinez A M. Learning deformable shape manifolds[J]. Pattern Recognition, 2012, 45 (4): 1792-1801.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部