期刊文献+

融合概念格约简的中文领域本体学习方法

Concept Lattice Reduction Application in Field of Chinese Domain Ontology Learning
下载PDF
导出
摘要 在基于形式概念分析的中文领域本体学习中,为提高概念格构建效率,将概念格约简理论应用于概念格构建中。首先对基于语义依存分析获取的形式背景进行对象和属性约简,然后基于约简的形式背景采用Godin算法构造概念格,最后根据修复定理修复约简概念格,得到完整的概念格。通过有关对萝藦科植物的文本学习,得到一个萝藦科植物领域本体。实验结果表明,引入概念格约简理论,概念格的构建效率提高70%,进而提高了领域本体构建的效率。 In order to improve the efficiency of building concept lattice in Chinese domain ontology learning based on formal concept analysis, we applied the concept lattice reduction theory to the process of building concept lattice. The main idea is that we reduce the objects and attributes of the obtained formal context which is based on semantic dependency analysis, adopte the Godin algorithm to construct concept lattice based on formal context reduced, and repaire the concept lattice with the reparation theories. The article takes the asclepiadaceae plants ontology construction as an example to verify this method. The experiment results show that the efficiency of concept lattice construction increase by 70%. It improves the efficiency of ontology construction.
出处 《吉林大学学报(信息科学版)》 CAS 2013年第6期621-626,共6页 Journal of Jilin University(Information Science Edition)
基金 吉林省科技厅自然科学基金资助项目(20130101060JC) 吉林省教育厅"十二五"科学技术研究基金资助项目(2014131)
关键词 形式概念分析 概念格约简 语义依存分析 领域本体学习 formal concept analysis concept lattice reduction semantic dependency analysis domain ontologylearning
  • 相关文献

参考文献7

二级参考文献79

共引文献238

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部