期刊文献+

构件失效后钢筋混凝土框架结构倒塌响应特性分析 被引量:3

Response analysis of RC frame structures in progressive collapse after the member failure
下载PDF
导出
摘要 利用OpenSees有限元软件,将抽柱法与有限元法相结合;并假定构件的局部失效位置,通过引入不同的结构参数,如结构的层数、层高、跨度等,分析了其对结构倒塌响应的影响;研究了结构在静力Pushdown分析和动力非线性分析条件下的结构倒塌响应特性。结果表明:柱失效位置对结构的静力Pushdown分析和动力非线性分析结果有较大影响,其中边柱的失效导致结构的抗倒塌能力明显降低,并在地震作用下随着失效点位移加大,振动规律也趋于不稳定;结构的极限承载力随着框架结构层数的增加而增加,极限位移和延性则随着层数的增加而降低,动力加载条件下结构失效位置的竖向位移随着层数的增加而增大;随着层高的增加,结构的极限承载力则逐渐降低,但对结构极限位移和延性的影响并不明显;跨度的增加使结构的极限承载力明显下降,延性略有降低,但极限位移和初始刚度却随之增加。以上规律性研究结果为钢筋混凝土框架结构的抗倒塌设计提供了必要的依据。 This paper adopts opensees finite element software as a tool, with its unique Remove command, by removing the reverse counterweight at the structure failure position the continuous collapse process of remaining structure under sudden failure of local components is simulated. By introduction of different structural parameters(such as structure storey number, storey height, span), the structural responses under static Pushdown analysis and dynamic nonlinear analysis are analyzed. The result shows the column failure locations have significant influence on the simulation results of structural responses under static Pushdown analysis and dynamic nonlinear analysis.The failure of external columns can cause a remarkable decrease of collapse performance meanwhile the displacement drift in the failure location under seismic load tends to be unstable. With the increase of structure storey number, the ultimate bearing capacity of structure and the vertical displacement in failure points under dynamic load increases, while the ultimate displacement and ductility decreases. With the increase of storey height,the ultimate bearing capacity of structure gradually decreases, while no obvious influence on the ultimate displacement and ductility is observed. The increase of span causes a significant decrease of the ultimate bearing capacity of structure and a slight decrease of ductility; however it leads to an increase of ultimate displacement and initial stiffness occurred. The above analysis has provided some necessary principles on the collapse resistance design of the reinforced concrete frame structure.
出处 《应用力学学报》 CAS CSCD 北大核心 2014年第1期116-121,10,共6页 Chinese Journal of Applied Mechanics
基金 国家重点基础研究发展计划(973计划)(2011CB013605) 国家自然科学基金重大研究计划重点项目(90815026) 国家自然科学基金委创新研究群体基金(51121005) 国家地震专项(200808074) 高等学校学科创新引智计划(B08014)
关键词 钢筋混凝土结构 倒塌 位移 刚度 延性 RC frame structure collapse displacement stiffness ductility.
  • 相关文献

参考文献3

二级参考文献15

  • 1童岳生,童润家,童燕华.钢筋混凝土圆形截面偏压构件的复核验算[J].建筑结构,1995,25(9):8-12. 被引量:5
  • 2王泳嘉 邢纪波.离散单元法及其在岩土工程中的应用[M].沈阳:东北工学院出版社,1991.244-249.
  • 3王泳嘉,离散单元法及其在岩土工程中的应用,1991年
  • 4Motohiko Hakuno, Kimiro Meguro. Simulation of concrete-frame collapse due to dynamic loading[J]. Journal of Engineering Mechanics. ASCE,1993,119(9):1709-1722.
  • 5Cundall P A. Particle Flow Code in 2 Dimensions[M]. Itasca Consulting Group, Inc,1996.
  • 6Cundall P A. Particle Flow Code in 2 Dimensions Fish in pfc[M]. Itasca Consulting Group, Inc.1999.
  • 7Cundall P A. PFC2D Users' Manual[M]. Minnesota:Itasca Consulting Group. Inc,1999.
  • 8Park Y J. IDARC: Inelastic Analysis of Reinforced Concrete Frame Shall Wall Structure[J].NCEER-87-0008.SUNY,USA,1987.
  • 9Li K N, Canny C. A Computer Program for 3D Non-Linear Dynamic Analysis of Building Structures[R]. Report No.004, National University of Singapore,1993.
  • 10叶献国.基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟[J].土木工程学报,1998,31(4):3-13. 被引量:28

共引文献47

同被引文献20

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部