期刊文献+

基于面向对象方法的压气机性能计算 被引量:3

Performance calculation of compressor based on object-oriented method
原文传递
导出
摘要 提出一套预测压气机未知特性的方法,并基于面向对象思想采用变比热容计算方法进行压气机性能计算的分析和编程.结合粒子群优化(PSO)的全局寻优能力和反向传播(BP)神经网络的局部寻优能力提出基于PSO的BP神经网络(PSO-BP神经网络)预测压气机特性,分析了其预测误差和拟合误差:拟合误差基本都小于0.5%,预测误差基本都小于0.8%.其拟合精度和预测精度满足要求.采用变比热容计算方法来计算压气机性能,并采用面向对象方法编写了压气机性能计算程序.对几个压气机变工况点进行验证,各输出参数的最大误差为1.12%.因此,特性预测方法和性能计算的数学模型适用于压气机性能计算,这套方法同样适用于燃气轮机性能计算. A characteristic prediction method was proposed and variable specific heat calculation was applied to the performance analysis and programming of compressor based on object-oriented theory. Also, a method named particle swarm optimization (PSO) based on back propagation (BP) neural network was presented by combining the global optimization a- bility of the PSO with the local optimization ability of the BP neural network, and the pre diction error and fitting error were analyzed. The fitting error is mostly within 0.5 % while the highest prediction error is within 0.8 % ; and both the fitting accuracy and prediction accuracy could meet the requirements. Variable specific heat calculation method was applied to the compressor performance calculation, and object-oriented method was used to build the compressor performance computing program. Compared with several working condition points of the compressor, the output parameter errors are less than 1.12% . Therefore, the characteristic prediction method and performance mathematical model are suitable for compressor performance calculation, and the compressor calculation procedure is also suitable for gas turbine performance calculation.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第1期140-145,共6页 Journal of Aerospace Power
关键词 压气机特性 性能计算 面向对象 粒子群优化(PSO) 神经网络 变比热容 compressor characteristics performance calculation object-oriented particle swarm optimization (PSO) neural network variable specific heat
  • 相关文献

参考文献18

  • 1郑洪涛,张玉龙,杨仁.CRGT循环燃气轮机性能仿真[J].航空动力学报,2012,27(1):118-123. 被引量:6
  • 2Li Y G,Abdul Ghafir M F,Wang L. Nonlinear multi ple points gas turbine off-design performance adaptation using a genetic algorithm[J].Journal of Engineering for Gas Turbines and Power,2011,(07):071701.1071701.9.
  • 3He F,Li Z,Liu P. Operation window and part-load performance study of a syngas fired gas turbine[J].Applied Energy,2012,(01):133,141.
  • 4Colin K D,Gregory J,Charles W P. Gas turbine system simulation:an object-oriented approach.NASATM-106044[R].1992.
  • 5Brain P C,James L F. Object-oriented approach for gas turbine engine simulation.NASA-TM 106970[R].1995.
  • 6Reed J A,Afjeh A A. Interactive secure web-enabled air craft engine simulation using XML data binding integration.AIAA 2002 4058[R].2002.
  • 7Reed J A. Onyx:an objected oriented framework for com putational simulation of gas turbine systems[D].Toledo,US:University of Toledo,1998.
  • 8Visser W P J,Broomhead M J. GSP:a generic object orien ted gas turbine simulation environment.NLR-TP2000-267[R].2000.
  • 9Kurzke J. GasTurb9:a program to calculate design and offdesign performance of gas turbines[EB/OL].http://www.gasturb.de,2001.
  • 10Cohen H,RogersGFC,Saravanamuttoo H I H. Gas tur bine theory[M].Englewood Cliffs,US:Prentice Hall Press,2001.

二级参考文献13

  • 1冯凤珍 ,孙允标 ,余又红 .基于神经网络的压气机特性计算新方法[J].计算机与数字工程,2004,32(6):45-47. 被引量:9
  • 2Jonsson M,Yan J Y.Humidified gas turbines a review of proposed and implemented cycles[J].Energy,2005,30(7):1013-1078.
  • 3Poullikka S A.An overview of current and future sustainable gas turbine technologies[J].Renewableand Suatainable Energy Reviews,2005,9(5):409-443.
  • 4Saad M A,Cheng D Y.The new LM2500 cheng cycle for power generation and cogeneration[J].Energy Conver Manage,1997,38(15):1637-1646.
  • 5Camporeale S M,Fortunato B.Performance of a mixed gassteam cycle power plant obtained upgrading an aer-oderivative gas turbine[J].Energy Conver Manage,1998,39(16):1683-1692.
  • 6Kesser K F,Hoffman M A,Baughn J W.Analysis of a basic chemically recuperated gas turbine power plant[J].Journal of Engineering for Gas Turbines and Power,1994,116(2):277-284.
  • 7Abdallah H,Harvey S.Thermodynamic analysis of chemically recuperated gas turbines[J].Int Therm Sci,2001,40(4):372-384.
  • 8Tirnovan R,Giurgea S,Miraoui A,et al.Modeling the ch-aracteristics of turbo-compressors for fuel-cell systems using hybrid method based on moving-least squares[J].Applied Energy,2009,86(7):1283-1289.
  • 9Ghorbanian K,Gholamrezaei M.An artificial neural netw-ork approach to compressor performance prediction[J].Applied Energy,2009,86(7):1210-1221.
  • 10Cortes O,Urquiza G,Hernandez J.Optimzation of operati-ng conditions for compressor performance by meansof neural network inverse[J].Applied Energy,2009,86(11):2487-2493.

共引文献5

同被引文献14

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部