期刊文献+

爆轰计算JWL状态方程参数的不确定度 被引量:10

Uncertainty quantification for JWL EOS parameters in explosive numerical simulation
下载PDF
导出
摘要 针对爆轰计算JWL状态方程参数,开展不确定度量化研究。首先从JWL状态方程性质出发,结合数学、物理分析确定JWL状态方程中主要参数R1的概率分布范围,然后利用非嵌入多项式混沌展开方法对PBX9404炸药驱动飞层外界面速度进行了不确定度量化分析。给出的分析方法与分析流程对爆轰计算及其他工程数值模拟不确定度量化有一定参考作用。 The JWL EOS parameters are very important in numerical simulations on explosives,which can be affirmed from cylinder experiments.But in actual computations,these parameters may depart from the original ones.So aimed to the JWL EOS parameters,the uncertainty quantification was explored.The distribution of the main parameter R1 was given with mathematical and physical analyses.And the uncertainty quantification analysis was carried out for the velocity at the outer interface of the copper flyer driven by the PBX9404 explosive.The analysis method used in the paper is helpful for the uncertainty quantification in detonation calculations and other engineering simulations.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2013年第6期647-654,共8页 Explosion and Shock Waves
基金 国家自然科学基金项目(11372051 11172050) 中国工程物理研究院科学基金项目(2013A0101004)~~
关键词 爆炸力学 不确定度 多项式混沌方法 JWL状态方程 mechanics of explosion uncertainty quantification polynomial chaos JWL EOS
  • 相关文献

参考文献9

  • 1王晓东,康顺.多项式混沌法求解随机Burgers方程[J].工程热物理学报,2010,31(3):393-398. 被引量:17
  • 2王晓东,康顺.多项式混沌方法在随机方腔流动模拟中的应用[J].中国科学:技术科学,2011,41(6):790-798. 被引量:22
  • 3Xiu D B,Karniadakis G E. The Wierner-Askey polynomial chaos for stochastic differential equations[J].SIAM Journal of Scientific Computation,2002,(02):619-644.
  • 4Ogura H. Orthogonal functional of the Poisson process[J].IEEE Transaction Information Theory,1972.473-481.
  • 5Kiureghian A D,Liu P L. Structural reliability under incomplete probability information[J].{H}Journal of Engineering Mechanics,1986,(01):85-104.
  • 6Hou T Y,Luo W,Rozovskii B. Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics[J].{H}Journal of Computational Physics,2006,(02):687-706.doi:10.1016/j.jcp.2006.01.008.
  • 7Eldred M S,Burkard J. Comparison of non-intrusive polynomial chaos and stochastic collocation method for uncertainty quantification[J].American Institute of Aeronautics and Astronautics Paper,2009.1-20.
  • 8孙承伟;卫玉章;周之奎.应用爆轰物理[M]{H}北京:国防工业出版社,2000.
  • 9江厚满;张若棋.确定JWL状态方程参数的非线性优化方法[J]{H}弹道学报,1998(02):25-28.

二级参考文献23

  • 1康顺.计算域对CFD模拟结果的影响[J].工程热物理学报,2005,26(z1):57-60. 被引量:21
  • 2康顺,刘强,祁明旭.一个高压比离心叶轮的CFD结果确认[J].工程热物理学报,2005,26(3):400-404. 被引量:37
  • 3EU Project (Sixth Framework), Non-Deterministic Simulation for CFD-Based Design Methodologies (NODESIMCFD)[EB/OL]. [2009-03-11]. http://www.nodesim.eu/.
  • 4Zang T A, Hemsch M J, Hilburger M W, et al. Needs and Opportunities for Uncertainty Based Multidisciplinary Design Methods for Aerospace Vehicles [R]. Hampton, Va.: NASA Langley Res. Cent., 2002:1-53.
  • 5Najm H N. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics [J]. Annu. Rev. Fluid Mech., 2009, 41:35-52.
  • 6Wiener S. The Homogeneous Chaos [J]. Am. J. Math., 1938, 60:897-936.
  • 7Le Maitre O, Knio O, Najm H N, et al. A Stochastic Projection Method for Fluid Flow I. Basic Formulation [J]. J. Comput. Phys., 2001, 173:481-511.
  • 8Xiu D, Karniadakis G E. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations [J]. SIAM Journal of Sci. Comput., 2002, 24:619-644.
  • 9Xiu D, Karniadakis G E. Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos [J]. J. Comput. Phys., 2003, 187:137-167.
  • 10Lacro C, Smirnov S. Uncertainty Propagation in the Solution of Compressible Navier-Stokes Equations Using Polynomial Chaos Decomposition [C]//NATO AVT Symposium, Athens, 2007.

共引文献34

同被引文献73

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部