期刊文献+

水稻落粒性的遗传分析和基因定位 被引量:6

Genetic Analysis and Molecular Mapping of Seed Shattering in Rice
原文传递
导出
摘要 利用爪哇稻NS2098与籼稻桂农占杂交并自交获得的F2群体,对水稻落粒性进行了遗传分析和基因定位。结果表明,难落粒性状受1对显性基因Sh(t)控制。利用分子标记将sh(t)定位在第1号染色体的SSR标记RM11869、RM3825、RM11875、RM8278、RM315、RM11893和RM1387附近,与它们之间的遗传距离分别是1.65,1.59,1.46,1.65,1.72,1.72和4.13 cM,与落粒性基因qSH1的1个SNP临近。序列分析表明,NS2098在该SNP位点为碱基T,而桂农占为碱基G,与qSH1基因的报道结果一致,推测Sh(t)与qSH1可能是同一基因。 The genetic analysis and gene mapping of seed shattering in rice were conducted using F1 and F2 popula- tions of the cross of NS2098, a nonshattering javanica mutant, with Guinongzhan, a shattering indica variety. The results indicated that nonshattering was controlled by a single dominant nuclear gene, tentatively named Sh (t). U- sing simple sequence repeat (SSR) markers, the sh (t) gene was mapped around the markers of RMl1869, RM3825, RMl1875, RM8278, RM315, RMl1893 and RM1387 on Chromosome 1, with a genetic distance of 1.65, 1.59, 1.46, 1.65, 1.72, 1.72 and 4.13 cM, respectively, and it was very close to the locus of an SNP of the nonshattering gene qSHI. The sequence analysis showed that the nueleotide of NS2098 was T at the SNP posi- tion while Guinongzhan was G at the SNP position, which is consistent with the previous report of the qSH1 gene. Therefore, it can be inferred that Sh(t) and qSH1 might be the same gene.
出处 《杂交水稻》 CSCD 北大核心 2014年第1期62-66,共5页 Hybrid Rice
基金 "十二五"科技支撑计划资助项目(2011BAD35B02) 重庆市农业科学院基本科研业务费(2010-2012) 优质高效水稻育种理论与方法创新研究(cstc2012ggc80002)
关键词 水稻 落粒性 遗传分析 基因定位 rice seed shattering genetic analysis molecular mapping
  • 相关文献

参考文献4

二级参考文献55

  • 1朱立宏,顾铭洪.水稻落粒性的遗传[J].遗传,1979(4):17-19. 被引量:22
  • 2沈圣泉,庄杰云,王淑珍,包劲松,郑康乐,舒庆尧,夏英武.籼稻落粒性QTL定位与环境互作效应检测[J].分子植物育种,2004,2(5):627-632. 被引量:11
  • 3许旭明,周元昌,吴为人.利用分子标记定位籼稻落粒性QTL[J].福建农林大学学报(自然科学版),2005,34(3):344-348. 被引量:8
  • 4李平,周开达,李仁端,陆朝福,陈英,朱立煌.利用RFLP标记定位水稻重要农艺性状的主效基因与微效基因[J].中国科学(C辑),1996,26(3):257-263. 被引量:26
  • 5[1]Cai H.W., and Morishima H., 2000, Genomic regions affecting seed shattering and seed dormancy in rice, Theor. Appl.Genet., 100:840-846
  • 6[2]Cao G.Q., Zhu J., and He C.X., 2001, Study in epistatic effect and QTL × envioronment interaction effevts of QTL for panicle length in rice (Oryza sativa L.), Journal of Zhejiang University (Agric and Life Science), 27(1): 55-61
  • 7[3]Fukuta Y., Harushima Y., and Yano M., 1996, Using quantitative trait locus analysis for studying genetic regulation of shattering, In: Khush G.S. (ed.), Rice Genetics Ⅲ., IRRI,Los Banos, Laguna, pp. 657-662
  • 8[4]Jansen R.C., van Ooijien J.W., Sram P., Lister C., and Dean C.,1995, Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci, Theor. Appl.Genet., 91:33-37
  • 9[6]Lu C.F., Shen L.S., Tan Z.B., Xu Y.B., He P., Chen Y., Zhu L.H.,and Xu Y.B., 1996, Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population, Theor. Appl. Genet., 93:1211-1217
  • 10[7]McCouch S.R., Cho Y.G., Yano M., Paul E., and Blinstrub M.,1997, Report on QTL nomenclature, Rice Genet Newsl.,14:11-13

共引文献30

同被引文献78

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部