期刊文献+

通过Adomian分解法求解二维Helmholtz方程 被引量:3

Adomian decomposition method for solving two dimensional Helmholtz equations
下载PDF
导出
摘要 提出基于Adomian分解法求解二维Helmholtz方程。通过Adomian分解法可以把Helmholtz微分方程和边界条件分别转换成递归代数公式和适用符号计算的简单代数公式。利用边界条件可以很容易得到方程的解析解表达式。Adomian分解法的主要特点在于计算简单快速,并且不需要进行线性化或离散化。最后给出数值实例以验证Adomian分解法求解二维Helmholtz方程的有效性。通过数值计算可以发现,基于Adomian分解法的计算结果非常接近精确解,并且该方法具有良好的收敛性。这表明Adomian分解法能够快速有效求解Helmholtz方程。 The Adomian decomposition method (ADM) is employed in this paper to solve two dimensional Helmholtz equations. Based on the ADM the Helmholtz differential equation becomes a recursive alge- braic equation. Furthermore, the boundary conditions become simple algebraic equations which are suit- able for symbolic computation. By using boundary conditions, the closed-form series solution can be easily obtained. The main advantages of ADM are computational simplicity and do not involve any linear- ization or discretization. Finally,several computed examples are presented to check the reliability of the method. Comparing the results using ADM to the exact solutions, excellent agreement is achieved. The numerical results demonstrate that the ADM is quite accurate and readily implemented. Furthermore, the good convergence and the excellent numerical stability of the solution based on the ADM can also be found. It means that the ADM is quite efficient and is practically well suited for solving two dimensional Helmholtz equations.
作者 毛崎波
出处 《计算力学学报》 CAS CSCD 北大核心 2014年第1期37-40,102,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51265037) 第44批教育部留学回国人员科研启动基金 江西省高等学校科技落地计划(KJLD12075) 江西省教育厅科技项目(GJJ13524)资助项目
关键词 HELMHOLTZ方程 ADOMIAN分解法 精确解 收敛性 Helmholtz equations Adomian decomposition method exact solutions convergence
  • 相关文献

参考文献3

二级参考文献34

  • 1丁方允.三维Helmholtz方程Dirichlet问题的边界元法及其收敛性分析[J].兰州大学学报(自然科学版),1995,31(3):30-38. 被引量:9
  • 2顾元通,丁桦.无网格法及其最新进展[J].力学进展,2005,35(3):323-337. 被引量:40
  • 3LIUGR,GUYT.无网格法理论及程序设计[M].王建明,周学军,译.济南:山东大学出版社,2007.
  • 4Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions[J]. Int J Numet Meth Eng, 2002,54 (11) : 1623-1648.
  • 5Yagawa G, Yamada T. Free mesh method, a kind of meshless finite element method[J]. Cornput Mech, 1996,18:383-386.
  • 6Uras R A, Chang C T, Chen Y, et al. Multiresolu- tion reproducing kernel particle methods in acoustics [J]. Journal of Computational Acoustics, 1997, 5 (1): 71-94.
  • 7Ihlenburg F. Finite Element Analysis of Acoustic Scattering [ M]. Springer-Verlag, New York, 19 9 8.
  • 8Bouillard P, Lacroix V, Bel E D. A meshless approach for 2D vibroacoustic problems[J]. Revue Europkenne Des eleMents Finis, 2002,11 (7-8) : 947-964.
  • 9Jin B, Marin L. The plane wave method for inverse problems associated with Helmholtz-type equations [J]. Engineering Analysis with Boundary Elements, 2008,32(3) :223-240.
  • 10Miao Y, Wang Y, Wang Y H. A meshless hybrid boundary-node method for Helmholtz problems[J]. Engineering Analysis with Boundary Elements, 2009,33(2) : 120-127.

共引文献22

同被引文献28

  • 1叶开沅,张世尧,黄吉士.浙江乱弹源流初探[J].兰州大学学报(社会科学版),1984,12(3):33-38. 被引量:2
  • 2严圣平.变厚度扁球壳大挠度问题的样条配点法[J].工程力学,1990,7(4):26-33. 被引量:1
  • 3Marin L.A meshless method for the stable solution of singular inverse problems for two-dimensional Helmholtztype equations[J].Engineering Analysis with Boundary Elements,2010,34(3):274-288.
  • 4He Z,Li P,Zhao G,et al.A meshless Galerkin least-square method for the Helmholtz equation[J].Engineering Analysis with Boundary Elements,2011,35(6):868-878.
  • 5Lenzi M S,Lefteriu S,Beriot H,et al.A fast frequency sweep approach using Pade approximations for solving Helmholtz finite element models[J].Journal of Sound and Vibration,2013,332(8):1897-1917.
  • 6Zheng H,Cai R C,Pan L S.A modified Galerkin FEM for 1D Helmholtz equations[J].Applied Acoustics,2013,74(1):211-216.
  • 7Laghrouche O,Mohamed M S.Locally enriched finite elements for the Helmholtz equation in two dimensions[J].Computers&Structures,2010,88(23/24):1469-1473.
  • 8Wu T,Chen Z.A dispersion minimizing subgridding finite difference scheme for the Helmholtz equation with PML[J].Journal of Computational and Applied Mathematics,2014,267(1):82-95.
  • 9Gordon D,Gordon R.Parallel solution of high frequency Helmholtz equations using high order finite difference schemes[J].Applied Mathematics and Computation,2012,218(21):10737-10754.
  • 10Turkel E,Gordon D,Gordon R,et al.Compact 2D and3D sixth order schemes for the Helmholtz equation with variable wave number[J].Journal of Computational Physics,2013,232(1):272-287.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部