摘要
设F q(q=pm,m≥1)为特征为p的有限域,V=Fn q是F q上的n维向量空间,G是作用在V上的有限伪反射群.设χ:G→F*q是G的一维表示,主要证明了χ(σ)=(detσ)α,0≤α≤r-1,其中,σ∈G,阶为r,r|q-1和有限域上的Molien公式,并且利用Molien公式,计算出了有限域上有限伪反射群的相对不变式的Poincaré级数.
Let Fq (q =pm,m ≥ 1) be a finite field with characteristic p,V =Fnq be the n-dimensional vector space over Fq and G be a finite pseudo-reflection group.Letx:G→F*q be a 1-dimensional representation of G.In this article we show that x(σ) =(det σ) α,0 ≤ α ≤ r-1,where σ ∈ G,r is the order of σ and r | q-1.In addition,we prove the Molien's Theorem in finite fields,and use the Molien's Theorem of invariants to compute the Poincaré series of relative invariants in finite fields.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第1期68-71,共4页
Journal of Sichuan Normal University(Natural Science)
基金
supported by the Ph.D.Programs Foundation of Ministry of Education of China Grant(20100181110073)
Science and Technology Research Projects of Chongqing Education Commission(KJ121316)~~