期刊文献+

有限域上有限伪反射群的相对不变式的Poincaré级数(英文)

The Poincaré Series of Relative Invariants of Finite Pseudo-reflection Groups in Finite Fields
下载PDF
导出
摘要 设F q(q=pm,m≥1)为特征为p的有限域,V=Fn q是F q上的n维向量空间,G是作用在V上的有限伪反射群.设χ:G→F*q是G的一维表示,主要证明了χ(σ)=(detσ)α,0≤α≤r-1,其中,σ∈G,阶为r,r|q-1和有限域上的Molien公式,并且利用Molien公式,计算出了有限域上有限伪反射群的相对不变式的Poincaré级数. Let Fq (q =pm,m ≥ 1) be a finite field with characteristic p,V =Fnq be the n-dimensional vector space over Fq and G be a finite pseudo-reflection group.Letx:G→F*q be a 1-dimensional representation of G.In this article we show that x(σ) =(det σ) α,0 ≤ α ≤ r-1,where σ ∈ G,r is the order of σ and r | q-1.In addition,we prove the Molien's Theorem in finite fields,and use the Molien's Theorem of invariants to compute the Poincaré series of relative invariants in finite fields.
作者 秦小二 鄢丽
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期68-71,共4页 Journal of Sichuan Normal University(Natural Science)
基金 supported by the Ph.D.Programs Foundation of Ministry of Education of China Grant(20100181110073) Science and Technology Research Projects of Chongqing Education Commission(KJ121316)~~
关键词 有限域 Poincaré级数 有限伪反射群 相对不变式 finite field Poincar6 series finite pseudo-reflection group relative invariants
  • 相关文献

参考文献1

二级参考文献12

  • 1Dickson, L. E., A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., 12(1911), 75-98.
  • 2Carlisle, D. and Kropholler, P. H., Rational invariants of certain orthogonal and unitary groups, Bull. London Math. Soc., 24(1992), 57-60.
  • 3Gregor Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Compu$. Arch., 21(1996), 351-366.
  • 4Tang, Z. and Wan, Z., A matrix approach to the rational invariants of certain classical groups over finite fields of characteristic two, Finite Fields Appl., 12(2006), 186-210.
  • 5Neusel, M. D. and Smith, L., Invariant Theory of Finite Groups, Math. Surveys and Monographs 94, Providence, RI: AMS, 2002.
  • 6Li, S. Z., Subgroup Structure of Classical Groups (in Chinese), Shanghai Science and Technology Press, Shanghai, 1998.
  • 7Chu, H., Supplementary notes on "rational invariants of certain orthogonal and unitary groups", Bull. London Math. Soc., 29(1997), 37-42.
  • 8Benson, D. J., Polynomial Invariants of Finite Groups, LMS Lecture Note Series 190, Cambridge University Press, Cambridge, 1993.
  • 9Thomas W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
  • 10Hua, L. K. and Wan, Z., Classical Groups (in Chinese), Shanghai Science and Technology Press, Shanghai, 1963.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部