期刊文献+

多任务多点映射分解技术的大规模入侵检测 被引量:1

Large-Scale Network Intrusion Detection Based on Multi-Point and Mulit-Task Decomposition Mapping Technology
下载PDF
导出
摘要 针对传统单节点的大规模入侵检测效率低,难以满足入侵检测实时性要求的难题,提出了一种多任务多点映射分解技术的大规模网络入侵检测方法。采用Map数和Reduce函数将网络特征库上传到分布式文件系统,并将子任务分配到多个节点上并行执行和到各子任务的匹配结果,根据投票法确定网络入侵检测结果。仿真结果表明,相对传统单点检测方法,本文方法减少了特征上传和匹配的计算复杂度,网络入侵检测速度大幅提高,可以满足网络入侵检测的实时性要求。 The efficiency of traditional single node intrusion detection is low and difficult to meet the need for real time for network intrusion detection. This paper presented a large - scale network detection method based on multi - tasking and muhi - point mapping decomposition technique. Firstly, the network features in the database was upload- ed to the distributed file system using Map/Reduce function. Then sub -tasks were executed in parallel on multiple nodes to get the matching results for each sub - task. Finally, the network intrusion detection results based on voting method were determined. Simulation results show that compared with the traditional single - point detection methods, the proposed method reduces the computation complexity, increases the speed of network intrusion detection and sat- isfies the requirements of real - time detection.
作者 隋振有
出处 《计算机仿真》 CSCD 北大核心 2014年第2期374-377,共4页 Computer Simulation
关键词 网络入侵 检测系统 分布式系统 云计算 Network intrusion Detection system Distributed system Cloud computing
  • 相关文献

参考文献10

  • 1D Denning. An intrusion detection model[J].{H}IEEE Transactions on Software Engineering,2010,(02):222-232.
  • 2W M Hu,M Hu,S Maybank. Adaboost based algorithm for network intrusion detection[J].IEEE Transactions on Systems Man and Cybernetic Parb B:Cybernetics,2008,(02):577-583.
  • 3L Khan,M Awad,B Thuraisingham. A new intrusion detection system using support vector machines and hierarchical clustering[J].The VLDB Journal,2007.507-521.
  • 4E J Palomo. A new GHSOM model applied to network security[J].Lecture Notes in Computer Science Springer,2008.680-689.
  • 5Yuan Ye,Shang Shuyuan,Li Li. Network intrusion detection using DS evidence combination with generalized regression neural network[J].Journal of Computational Information Systems,2011,(05):1802-1809.
  • 6Foster. Cloud computing and grid computing 360-degree comparison[J].in IEEE grid computing environments,2008,(11):1-10.
  • 7P Natesan,P Balasubramanie,G Gowrison. Improving attack detection rate in network intrusion detection using Adaboost algorithm with multiple weak classifiers[J].Journal of Information and Computational Science,2012,(08):2239-2251.
  • 8Sanjay Ghemawat,Howard Gobioff,ShunTak Leung. The Google file system[A].Bolton Landing:ACM,2003.29-43.
  • 9Jeffrey Dean,Sanjay Ghemawat. MapReduce:a flexible data processing tool[J].{H}Communications of the ACM,2010,(01):72-77.
  • 10Konstantin Shvacliko. Hadoop distributed file system for the Grid[A].{H}IEEE,2009.1056-1061.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部