期刊文献+

颅内声压干扰下的病变医学图像区域识别 被引量:2

Lesions Area Identification of Medical Images under Disturbance of Intracranial Pressure
下载PDF
导出
摘要 研究病变医学图像识别准确率优化问题。病变医学图像受到颅内声压的干扰,在采集过程中很难形成准确的特征属性提取,造成病变区域特征模糊化。传统算法对随机声压干扰下的病变医学图像特征很难形成有效的约束,造成病变区域识别精度下降。为了提高颅内声压干扰下病变医学图像的识别准确率,提出一种灰度共生矩阵和鲶鱼粒子群优化神经网络的病变医学图像识别算法(CFPOS-BP)。首先采用灰度共生矩阵提取病变医学图像特征,然后将特征输入到BP神经网络进行学习,通过粒子群优化算法优化BP神经参数,并引入"鲶鱼"效应克服粒子群算法存在的局部最优缺陷,最后采用具体病变医学图像数据库对算法性能进行仿真测试。仿真结果表明,相对于传统病变医学图像识别算法,CFPOS-BP可以获得更优的病变医学图像识别准确率,提高了病变医学图像识别准确率和识别效率。 This paper studied the optimization problem of recognition accuracy of lesions medical images. In the process of gathering lesions medical images, sound intracranial pressure can cause interference. It is difficult to form an accurate characteristic attribute extraction, resulting in lesion area features blurred. In order to improve the recog- nition accuracy rate of the lesions medical images under intracranial sound pressure interfere, we proposed a feature extraction method for the lesion medical images based on GLCM and catfish particle swarm optimization neural net- work algorithm (CFPOS- BP). Firstly, the characteristics of lesion medical images were extracted with GLCM and the results were input to the BP neural network learning. Then the particle swarm optimization algorithm was applied to optimize BP neural parameters. Meanwhile, the "catfish effect" was introduced to overcome the local optimum de- fect of particle swarm optimization. Finally, the simulation tests were made with medical image database of specific lesions. The simulation results show that compared with traditional lesions in medical image recognition algorithm, the CFPOS - BP can get better recognition accuracy of pathological change medical image. It can improve the recog- nition accuracy of pathological change medical image as well as the recognition efficiency.
出处 《计算机仿真》 CSCD 北大核心 2014年第2期427-431,共5页 Computer Simulation
关键词 医学图像识别 灰度共生矩阵 鲶鱼效果 粒子群优化 神经网络 Medical image recognition gray level co- occurrence matrix Catfish effect Particle swarm optimi- zation (PSO) Neural network(NN)
  • 相关文献

参考文献10

二级参考文献87

  • 1李毅,阮秋琦.应用支持向量机的纹理分类[J].通信学报,2005,26(1):114-119. 被引量:10
  • 2黎奎,宋宇,邓建奇,刘民,陈忠林,周激流.基于特征脸和BP神经网络的人脸识别[J].计算机应用研究,2005,22(6):236-237. 被引量:19
  • 3陈杰,辛斌,窦丽华.关于智能优化方法的集聚性与弥散性问题[J].智能系统学报,2007,2(2):48-56. 被引量:9
  • 4林杨,刘贵全,杨立身.基于改进SVM方法的入侵检测[J].计算机工程,2007,33(14):151-153. 被引量:8
  • 5章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 6[1]Marsicoi M D. Cinque I, Levialdi S. Indexing pictorial document by their content:A survey of current techniques[J].Image and Vision Computing, 1997,15(2): 119~141.
  • 7[2]Flickner M. Sawhney H, Ashley J et al. Query by image and video content:The QBIC system[J]. IEEE Computer, 1995,28(9):23~32.
  • 8[3]Pentland A. Picard R W. Sclaroff S. Photobook: Tools for content-based manipulation of image databases[A]. In:Proc. of the SPIE Storage and Retrieval for Image and Video Databases II [C]. San Jose. CA.1994,2185:34~47.
  • 9[4]Aslandogan Y A. Clement T Yu. Techniques and systems for image and video retrieval [J]. IEEE Trans. on Knowledge and Data Engineering. 1999,11(1) :56~63.
  • 10[5]Mallat Stephane G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans. on Pattern and analysis and Machine Intelligence, 1989, 11 (7):647 ~693.

共引文献366

同被引文献24

  • 1黎奎,宋宇,邓建奇,刘民,陈忠林,周激流.基于特征脸和BP神经网络的人脸识别[J].计算机应用研究,2005,22(6):236-237. 被引量:19
  • 2宁旭,马显光,李晓寒,蒋洪.区域生长联合边缘分析的医学彩色图像分割研究[J].激光杂志,2007,28(2):86-86. 被引量:3
  • 3Kekre H B, Thepade S, Sanas S. Improving performance of multileveled BTC based CBIR using sundry color spaces [ J ]. International Journal of Image Processing, 2010,4 ( 6 ) : 620-630.
  • 4Zhang B C, Gao Y S, Zhao S Q, J z Liu. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor[ J ]. IEEE Transactions on Image Processing,2010,19 ( 2 ) :533-544.
  • 5Li Bao Pu, Meng Max. Computer-based detection of bleed- ing and ulcer in wireless capsule endoscope images by chro- maticity moments[J].Computers in Biology and Medicine, 2009,22(3 ) : 141-147.
  • 6Lehmann T M, Gonner C, Spitzer K. Interpolation methods in medieal image processing [ J ]. Medical Imaging, IEEE Transactions, 1999,18 ( 11 ) : 1049-1075.K.
  • 7Niranjan D,Kite T D, Geisler W S, et al. Image quality as- sessment based on a degradation model [ J 1- IEEE Transac- tions on Image Processing,2000,9(4) :636-650.
  • 8Dun Miao, Donghai Huo, Wilson D L. Quantitative image quality evaluation of MR images using perceptual difference models [ J ]. Medical Physics ,2008,38 ( 6 ) :2541-2552.
  • 9傅伟,万洪晓,熊平.基于小波软阈值滤波的医学图像去噪[J].中国医学物理学杂志,2009,26(1):982-984. 被引量:7
  • 10尹聪,栾秋平,冯念伦.病变细胞显微图像分析与识别技术的研究[J].生物医学工程研究,2009,28(1):35-38. 被引量:6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部