期刊文献+

改进的Camshift与Kalman融合的目标跟踪算法 被引量:3

A Target Tracking Algorithm Based on Improved Camshift and Kalman
原文传递
导出
摘要 Camshift算法主要利用物体的颜色信息进行跟踪,在复杂背景条件下容易造成目标的跟丢,且在目标被遮挡时,也容易造成跟踪失效。本文提出了一种改进的Camshift目标跟踪算法。首先将目标图像的HSV模型的三个分量进行加权建立一种新的目标颜色模型,然后由对整帧图像计算反向投影改为比搜索窗口稍大的区域计算反向投影,减少了相似背景的干扰。同时为了解决遮挡问题,结合了Kalman滤波器,有效地预测了目标的位置。实验表明,本算法能够避免背景颜色干扰和解决遮挡问题,实现了对运动目标准确跟踪。 Camshift algorithm mainly utilizes the color information of object to track object, thus it is easy to cause goal lost under the condition of complicated background. And the object is also subject to be lost when being sheltered. This paper puts forward an improved Camshifl object tracking algorithm. Firstly, the three components of the target image in the HSV model are weighted to create a new kind of target color model, and then it calculates the back projection in a slightly larger area than the search window only instead of calculating the back projection of the whole image, thereby reducing the interference of similar background. Meanwhile in order to solve the sheltered problem, the Kalman filter is combined with improved Camshift algorithm to predict the position of the target effectively. Experimental results show that the proposed algorithm can avoid the interference of the background color and solve the sheltered problem of the object, so that achieving a precise tracking of moving objects.
出处 《电子技术(上海)》 2014年第1期11-13,共3页 Electronic Technology
关键词 均值漂移 卡尔曼滤波 目标跟踪 camshift Kalman filter target tracking
  • 相关文献

参考文献7

二级参考文献50

  • 1刘士荣,姜晓艳.一种改进的Camshift/Kalman运动目标跟踪算法[J].控制工程,2010,17(4):470-474. 被引量:10
  • 2李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 3Collins R T,Lipton A J.Introduction to the special section on video surveillance[J].IEEE Trans on Pattern Anaysis and Machine Intelligence, 2000,22( 8 ) : 745-746.
  • 4Hu Weiming,Xiao Xuejuan,Tan Tieniu.Traffic accident prediction using vehicle tracking and trajectory analysis[J].Intelligent Trans portation System, 2003,11 : 220-225.
  • 5Boyle M.The effects of capture conditions on the CAMSHIFT face tracker[R].Alberta,Canada:Department of Computer Science,University of Calgary,2001.
  • 6Murat T.Digital video processing[M].[S.l.] : Prentice Hall, Inc, 1996: 94-95.
  • 7Collins,Lipton,Kanade,et al.A system for video surveillance and monitoring:VSAM final report,Technical Report CMU2RI2TR200212[R]. Robotics Institute Canaegie Mellon University,2000.
  • 8K Fukunaga,L D Hostetler.The estimation of the gradient of a density function,with applications in pattern recognition [J].IEEE Transaction on Information Theory(S0018-9448),1975,21(1):32 - 40.
  • 9D Comaniciu, P Meer. Mean shift: A robust approach toward feature space analysis[J].IEEE Transaction on Pattern Analysis and Machine Intelligence(S0162-8828),2002,24(5):603 - 619.
  • 10Bradski G R. Computer vision face tracking for use in a perceptual user interface [J]. Intel Technology Journal, 1998,2:214-219.

共引文献90

同被引文献41

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2Yilmaz A, Javed O, Shah M. Object tracking: A survcy [ J ]. ACM Computing Surveys, 2006,38 (4) : 1-45.
  • 3Xu Xinyu, Li Baoxin. Adaptive Rao-Blackwellized particle filter and its evaluation for tracking in surveillance [ J ]. IEEE Transactions on Image Processing, 2007, 16 ( 3 ) : 838 -849.
  • 4Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels[ C]//ICCV. 2011:263-270.
  • 5Zou Tengyue, Tang Xiaoqi, Song Bao. Improved Camshift tracking algorithm based on silhouette moving detection [ C]//The Third International Conference on Multimedia Information Networking and Security. 2011 : 11-15.
  • 6Wang Zhaowen, Yang Xiaokang, Xu Yi, et al. CamShift guided particle filter for visual tracking[J]. Pattern Recog- nition Letters, 2009,30 (4) : 407 -413.
  • 7Deilamani M J, Asli R N. Moving object tracking based on Mean-shift algorithm and feature fusion[ C]//2011 Interna- tional Symposium on Artificial Intelligence and Signal Pro- cessing. 2011:48-53.
  • 8Nouar O D, Ali G. Improved object tracking with Camshift algorithm[ C]//IEEE International Conference on Acous- tics, Speech and Signal Processing. 2006:657-660.
  • 9谭炽烈.多目标运动轨迹跟踪算法及DSP实现[D].杭州:浙江大学,2006.
  • 10Culpepper B J,Sohl-Dickstein J.Building a better probabilistic model of images by factorization[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision(ICCV),Barcelona,Spain:IEEE,2011:2011-2017.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部