期刊文献+

指标融合下对网络安全态势评估模型的构建研究 被引量:1

The following indicators to assess construct fusion research model for network security situation
原文传递
导出
摘要 网络安全一直是困扰网络稳定性的关键,而对于网络安全态势的表征,需要从定性和定量分析上进行综合判定,并从信息的交互和关联性上来把握网络安全指标的科学评估,如静态信息主要从日志文件、漏洞扫描、网络脆弱性等指标来获得,动态信息主要从网络主机实时性状态参数信息及运行指标来获得,并对各类态势指标进行量化和权重修正,以决策者提供满足网络安全管理策略的重要技术参考依据。 Network security has always been the key to the stability of the troubled network, and for characterization of network security situation requires qualitative and quantitative analysis from the comprehensive judgment and come to grasp the scientific assessment of network security indicators from the interaction and relevance of information, such as static information obtained mainly from the log files, vulnerability scanning, network vulnerability and other indicators, mainly to obtain dynamic information from a host of real-time network status indicator parameter information and run, and all kinds of momentum indicators to quantify and weight amended to policymakers providing network security management strategy to meet the important technical reference.
作者 郭洪荣
出处 《网络安全技术与应用》 2014年第1期44-46,共3页 Network Security Technology & Application
关键词 网络态势评估 态势指标 指标融合 评估模型 Network situation assessment Momentum indicators Indicators fusion Assessment mode
  • 相关文献

参考文献2

二级参考文献19

  • 1冯登国,张阳,张玉清.信息安全风险评估综述[J].通信学报,2004,25(7):10-18. 被引量:308
  • 2陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 3任伟,蒋兴浩,孙锬锋.基于RBF神经网络的网络安全态势预测方法[J].计算机工程与应用,2006,42(31):136-138. 被引量:71
  • 4胡明明,王慧强,赖积保.一种基于GA-BPNN的网络安全态势预测方法.http://www.paper.edu.cn/paper.php?seriM_number=200707-437,2007.
  • 5Bass T.Intrusion detection systems and multisensor data fusion:creating cyberspace situational awareness.Communications of the ACM,2000;43(4):99-105.
  • 6Lau S.The spinning cube of potential doom.Communications of the ACM,2004; 47(6):25-26.
  • 7Yurcik W.Visualizing NetFlows for security at line speed:the SIFT tool suite.Proceedings of the 19th Usenix Large Installation System Ad-ministration Conference(LISA),San Diego,CA USA,Dec,2005; 169-176.
  • 8Melssen W J.Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization.Analytical Chimica Acta,2005;544(1):292-305.
  • 9李颖丽,彭亦功.数据融合技术及其应用[R].智能检测控制技术发展研讨会论文集.
  • 10Vapnik V 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..

共引文献20

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部