期刊文献+

后非线性马尔科夫算法应用于振动信号提取 被引量:1

Post Nonlinear Markov Algorithm Applied to Vibration Signal Extraction
下载PDF
导出
摘要 实际环境中通过传感器检测到的设备状态信号往往是非线性混合信号;而设备状态信号是设备故障诊断的基础,因此从混合信号中分离出设备状态信号极其重要。现有线性独立分量分析方法分离效果并不理想,对此提出将后非线性马尔科夫盲源分离算法应用于设备状态信号提取。为验证算法有效性,将直升机齿轮箱振动信号的非线性混合信号进行分离实验。实验结果表明算法能有效分离出轴承故障振动信号,为进一步提高故障诊断准确性和方便性提供了帮助。 In the physical environment through sensors detect the device status signals often are non-linear mixed-signal, and the device status signals are the basis for fault diagnosis, therefore separate from the mixed-signal device status signals are extremely important. Existing linear independent component analysis separation effect are not ideal, them the post non-linear Markov blind source separation algorithm is applied to the device status signals extraction. In order to verify the effectiveness of the proposed algorithm helicopter gearbox vibration signals non-lin-ear mixed-signal is used for experiment separation. The experimental results show that the proposed algorithm can effectively separate the bearing fault vibration signals, and provide help to the fault diagnosis more accuracy and convenience in the further.
出处 《科学技术与工程》 北大核心 2014年第2期127-130,共4页 Science Technology and Engineering
基金 吉林省科技发展计划项目(201101110)资助
关键词 非线性独立分量分析 马尔科夫 故障诊断 盲源分离 nonlinear independent component analysis Markov fault diagnosis blind source sepa- ration
  • 相关文献

参考文献11

二级参考文献50

  • 1李舜酩,杨涛.基于峭度的转子振动信号盲分离[J].应用力学学报,2007,24(4):560-565. 被引量:12
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 3张希军,吴志真,雷勇.航空发动机试车中转子故障诊断[J].计算机测量与控制,2005,13(11):1182-1185. 被引量:21
  • 4胥永刚,李强,王正英,王太勇.基于独立分量分析的机械故障信息提取[J].天津大学学报,2006,39(9):1066-1071. 被引量:21
  • 5Yang H H, et al. Information back - propagation for blind separation of sources from non - linear mixture [A]. Proc. ICNN, Houston, 1997. 2141- 2146.
  • 6Taleb A,et al. Source separation in post nonlinear mixtures: an entropy- based algorithm[A]. Proceedings of ICASSP[C]. Seattle, Washington, 1998. 2089 - 2092.
  • 7Almeida L B. MISEP - an ICA method for linear and nonlinear mixtures, based on mutual information[A]. Proceedings of the 2002 International Joint Conference[C]. Honolulu, Hawaii, 2002. 442- 447.
  • 8Bell A J, et al. An information - maximization approach to blind separation and blind deconvolution[J].Neural Computation, 1995, (7):1129- 1159.
  • 9Almeida L B. Linear and nonlinear ICA based on mutual information the MISEP method[J]. Signal Processing, 2004,84(2):231-245.
  • 10Ypma A,Pajunen P. Rotating machine vibration analysis with second - order indepent component analysis[A]. Proceeding of ICA'99[C]. 1999.37-42.

共引文献30

同被引文献12

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部