期刊文献+

利用Relief特征加权进行基于小波变换的纹理分割

Wavelet Transform-based Texture Segmentation Using Feature Weighted by Relief
下载PDF
导出
摘要 在利用小波进行纹理分割的相关研究中,通常小波分解的四个子带对分类的贡献是均匀的。为了考虑不同子带对图像分割的不同影响,提出了一种利用Relief算法对小波分解的子带特征进行加权的算法。首先对纹理图像进行标准金字塔结构小波变换,对小波变换后的各层四个子带进行特征提取作为纹理图像的四维特征;从粗尺度开始对纹理图像进行K均值分割,得到初步分割结果;然后把初步分割结果扩展到下一尺度,根据扩展后的分割标记图对相应尺度的纹理特征进行基于Relief的特征加权,得到加权后的四维特征;再进行K均值分割,经过多层迭代后,得到原纹理图像的分割结果。实验结果表明,与未加权的传统分割方法比较,该方法在分割错误率、边缘准确性以及区域一致性上都有明显改善。 In the field of texture segmentation method based on wavelet analysis, ordinary, the each layers of the wavelet transform plays a uniform contribution for segmentation. To consider the particular contribution of differ-ent layers, a new approach to weight the features of each layers is presented. Firstly, the standard pyramid-struc-tured wavelet transform is employed. Features from the four bands of the each layers of the wavelet transform forms 4-dimensional features is extracted. The segmentation starts at the lowest resolution using the K-means clustering scheme and the result is propagated to a higher one. According the propagated result , the 4-dimensional features of higher resolution are weighted by relief algorithm , then using the K-means clustering. After multiple iterations, the final segmented image is got. Result shows that compared with a typical traditional method without feature weigh-ting, the present approach shows visible improvements both in diminishing segmentation error, and in increasing boundary precision and region harmony.
出处 《科学技术与工程》 北大核心 2014年第2期187-190,共4页 Science Technology and Engineering
基金 国际自然科学基金(40971217) 地理信息工程国家重点实验室开放基金(SKLJIE2013-M-3-2) 高分辨对地观测系统重大专项(JFZX0404040802) 国家级大学生创新创业训练计划项目(201210710088)资助
关键词 纹理分析 小波变换 RELIEF算法 特征加权 texture analysis wavelet transform relief algorithm feature weighting
  • 相关文献

参考文献2

二级参考文献27

  • 1Tuceryan M. Analysis T. The Handbook of Pattern Recognition and Computer Vision. 2nd ed., World Scientific Publishing Co., 1998.207-248.
  • 2Randen T, John HH. Filtering for texture classification: A comparative study. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1999,21(4):291-311. [doi: 10.1109/34.761261].
  • 3Ilonen J, Kamarainen JK, Paalanen P, Hamouz M, Kittler J, Kalviainen H. Image feature localization by multiple hypothesis testing of Gabor features. IEEE Trans. on Image Processing, 2008,17(3):311-325. [doi: 10. 1109/TIP.2007.916052].
  • 4Selvan S, Ramakrishnan S. SVD-Based modeling for image texture classification using wavelet transformation. IEEE Trans. on Image Processing, 2007,16(11):2688-2696. [doi: 10.1109/TIP.2007.908082].
  • 5Scharcanski J. A wavelet-based approach for analyzing industrial stochastic textures with applications. IEEE Trans. on Systems, Man, and Cybernetics--Part A: Systems and Humans, 2007,37(1): 10-21. [doi: 10.1109/TSMCA.2006.886345].
  • 6Huang K, Aviyente S. Wavelet feature selection for image classification. IEEE Trans. on Image Processing, 2008,17(9): 1709-1719. [doi: 10.1109/TIP.2008.2001050].
  • 7Fan GL, Xia XG. Wavelet-Based texture analysis and synthesis using hidden Markov models. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, 2003,50(1):106-120. [doi: 10.1109/TCSI.2002.807520].
  • 8Dasgupta N, Carin L. Texture analysis with variational hidden Markov trees. IEEE Trans. on Signal Process, 2006,54(6): 2353-2356. [doi: 10.1109/TSP.2006.872588].
  • 9Christoudias CM, Georgescu B. Synergism in low level vision. In: Proc. of the 16th Int'l Conf. on Pattern Recognition, Vol.4. Quebec City, 2002. 150-155.
  • 10Liang KH, Tjahjadi T. Adaptive scale fixing for multiscale texture segmentation. IEEE Trans. on Image Processing, 2006,15(1): 249-256. [doi: 10.1109/TIP.2005.860340].

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部