期刊文献+

基于最小二乘支持向量机的阵列波束优化研究 被引量:1

Research on Optimization of Array Beamforming Based on Least Squares Support Vector Machine
下载PDF
导出
摘要 针对标准支持向量机计算复杂度高、内存开销大、训练速度慢的缺点,为改善标准支持向量机的训练效率,快速优化阵列波束,提出了基于最小二乘支持向量机(least squares support vector machine,LSSVM)的阵列波束优化方法。LSSVM采用二次损失函数取代标准支持向量机中的不敏感损失函数,将不等式约束变为等式约束,从而将二次规划问题转化为一个线性矩阵求解问题,具有良好的快速性;与传统的标准支持向量机波束形成相比,所需计算资源更少,训练速度更快,计算效率更高,泛化能力更强。仿真实验结果表明:在保持波束形成的性能指标基本不变的情况下,LSSVM降低了计算复杂度,减少了内存开销,提高了运算速度和收敛精度,为波束形成器的优化设计提供了一种新的有效方法。 For the shortcomings of standard support vector machine, such as high computational complexity, memory overhead of large and slow training, in order to improve the training efficiency of standard support vector machine and to optimize the beamforming rapidly it proposes the optimization method of array beamforming based on Least Squares Support Vector Machine (LSSVM). The method based on LSSVM utilizes quadratic loss function to replace the insensitive loss function of support vector machine and changes the inequality constraints into equality constraints. Thus it transforms a quadratic programming problem into a solving linear matrix problem and has a ni- cer speediness. Compared with the traditional standard support vector machine beamforming, it requires less com-putational resources and has stronger generalization ability and higher computational efficiency with faster training. The simulation results show that the method of LSSVM reduces the computational complexity and the memory occu-pancy, increases computing speed and convergence accuracy and it provides a new and effective ways for the opti-mization design of beamformer.
出处 《科学技术与工程》 北大核心 2014年第2期196-200,共5页 Science Technology and Engineering
基金 国家自然科学基金项目(51179157) 渭南师范学院重点科研项目(13YKF001)资助
关键词 最小二乘支持向量机 阵列信号 波束形成 least squares support vector machine array signal beamforming
  • 相关文献

参考文献3

二级参考文献31

  • 1[1]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag,1995.
  • 2[2]Vapnik V N. An overview of statistical learning theory[J]. IEEE Trans Neural Network,1999,10(5):988-999.
  • 3[3]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag,1999.
  • 4[4]Probenl L P. A set of neural network benchmark problem and benchmark rules[R]. Germany: University Karlsruhe,1994.
  • 5[5]Turney P D. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm[J]. J of Artificial Intelligence Research,1995,2:369-409.
  • 6Vapnik V N.Statistical learning theory[M].New York:1995.
  • 7Burges CJC.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 8Johan Suykens A K.Nonlinear Modeling and Support Vector Machines[C]//IEEE Instrumentation and Measurement Technology Conference,Budapest,Hungary,2001.
  • 9J.A.K.Suykens,J.Vandewalle.Least squares support vector machine classifiers[J].Neural Processing Letters (S1370-4621),1999,9(3):293-300.
  • 10Wenjian Wang,Zongben Xu,Weizhen Lu,Xiaoyun Zhang.Determination of the spread parameter in the Gaussian kernel for classification and regression[J].Neurocomputing (S0893-6080),2003,55:643-663.

共引文献252

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部