期刊文献+

Modeling study on seasonal variation in aerosol extinction properties over China 被引量:1

Modeling study on seasonal variation in aerosol extinction properties over China
原文传递
导出
摘要 To investigate the seasonal variation of aerosol optical depth (AOD), extinction coefficient (EXT), single scattering albedo (SSA) and the decomposed impacts from sulfate (SO42-) and black carbon (BC) over China, numerical experiments are conducted from November 2007 to December 2008 by using WRF-Chem. Comparison of model results with measurements shows that model can reproduce the spatial distribution and seasonal variation of AOD and SSA. Over south China, AOD is largest in spring (0.6-1.2) and lowest in summer (0.2-0.6). Over north, northeast and east China, AOD is highest in summer while lowest in winter. The high value of EXT under 850 hPa which is the reflection of low visibility ranges from 0.4-0.8 km-1 and the high value area shifts to north during winter, spring and summer, then back to south in autumn. SSA is 0.92-0.94 in winter and 0.94-0.96 for the other three seasons because of highest BC concentration in winter over south China. Over east China, SSA is highest (0.92-0.96) in summer, and 0.88-0.92 during winter, spring and autumn as the concentration of scattering aerosol is highest while BC concentration is lowest in summer over this region. Over north China, SSA is highest (0.9-0.94) in summer and lowest (0.82-0.86) in winter due to the significant variation of aerosol concentration. The SOn2- induced EXT increases about 5%- 55% and the impacts of BC on EXT is much smaller (2%-10%). The SO42--induced increase in SSA is 0.01-0.08 and the BC-induced SSA decreases 0.02-0.18. To investigate the seasonal variation of aerosol optical depth (AOD), extinction coefficient (EXT), single scattering albedo (SSA) and the decomposed impacts from sulfate (SO42-) and black carbon (BC) over China, numerical experiments are conducted from November 2007 to December 2008 by using WRF-Chem. Comparison of model results with measurements shows that model can reproduce the spatial distribution and seasonal variation of AOD and SSA. Over south China, AOD is largest in spring (0.6-1.2) and lowest in summer (0.2-0.6). Over north, northeast and east China, AOD is highest in summer while lowest in winter. The high value of EXT under 850 hPa which is the reflection of low visibility ranges from 0.4-0.8 km-1 and the high value area shifts to north during winter, spring and summer, then back to south in autumn. SSA is 0.92-0.94 in winter and 0.94-0.96 for the other three seasons because of highest BC concentration in winter over south China. Over east China, SSA is highest (0.92-0.96) in summer, and 0.88-0.92 during winter, spring and autumn as the concentration of scattering aerosol is highest while BC concentration is lowest in summer over this region. Over north China, SSA is highest (0.9-0.94) in summer and lowest (0.82-0.86) in winter due to the significant variation of aerosol concentration. The SOn2- induced EXT increases about 5%- 55% and the impacts of BC on EXT is much smaller (2%-10%). The SO42--induced increase in SSA is 0.01-0.08 and the BC-induced SSA decreases 0.02-0.18.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第1期97-109,共13页 环境科学学报(英文版)
基金 supported by the"Strategic Priority Research Program(B)"of the Chinese Academy of Sciences(No.XDB01020300)
关键词 seasonal variation AOD EXT SSA China WRF-Chem seasonal variation AOD EXT SSA China WRF-Chem
  • 相关文献

参考文献5

二级参考文献54

共引文献435

同被引文献9

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部