期刊文献+

Remediation of nutrient-rich waters using the terrestrial plant, Pandanus amaryllifolius Roxb. 被引量:8

Remediation of nutrient-rich waters using the terrestrial plant, Pandanus amaryllifolius Roxb.
原文传递
导出
摘要 Effective control of eutrophication is generally established through the reduction of nutrient loading into waterways and water bodies. An economically viable and ecologically sustainable approach to nutrient pollution control could involve the integration of retention ponds, wetlands and greenways into water management systems. Plants not only play an invaluable role in the assimilation and removal of nutrients, but they also support fauna richness and can be aesthetically pleasing. Pandanus amaryllifolius, a tropical terrestrial plant, was found to establish well in hydrophytic conditions and was highly effective in remediating high nutrient levels in an aquatic environment showing 100% removal of NO^-N up to 200 mg/L in 14 days. Phosphate uptake by the plant was less efficient with 64% of the PO4-P removed at the maximum concentration of 100 mg/L at the end of 6 weeks. With its high NO^-N and PO43--P removal efficiency, P. amaryllifolius depleted the nutrient-rich media and markedly contained the natural colonization of algae. The impediment of algal growth led to improvements in the water quality with significant decreases in turbidity, pH and electrical conductivity. In addition, the plants did not show stress symptoms when grown in high nutrient levels as shown by the changes in their biomass, total soluble proteins and chlorophyll accumulation as well as photochemical efficiency. Thus, P. amaryUifolius is a potential candidate for the mitigation of nutrient pollution in phytoremediation systems in the tropics as the plant requires low maintenance, is tolerant to the natural variability of weather conditions and fluctuating hydro-periods, and exhibit good nutrient removal capabilities. Effective control of eutrophication is generally established through the reduction of nutrient loading into waterways and water bodies. An economically viable and ecologically sustainable approach to nutrient pollution control could involve the integration of retention ponds, wetlands and greenways into water management systems. Plants not only play an invaluable role in the assimilation and removal of nutrients, but they also support fauna richness and can be aesthetically pleasing. Pandanus amaryllifolius, a tropical terrestrial plant, was found to establish well in hydrophytic conditions and was highly effective in remediating high nutrient levels in an aquatic environment showing 100% removal of NO^-N up to 200 mg/L in 14 days. Phosphate uptake by the plant was less efficient with 64% of the PO4-P removed at the maximum concentration of 100 mg/L at the end of 6 weeks. With its high NO^-N and PO43--P removal efficiency, P. amaryllifolius depleted the nutrient-rich media and markedly contained the natural colonization of algae. The impediment of algal growth led to improvements in the water quality with significant decreases in turbidity, pH and electrical conductivity. In addition, the plants did not show stress symptoms when grown in high nutrient levels as shown by the changes in their biomass, total soluble proteins and chlorophyll accumulation as well as photochemical efficiency. Thus, P. amaryUifolius is a potential candidate for the mitigation of nutrient pollution in phytoremediation systems in the tropics as the plant requires low maintenance, is tolerant to the natural variability of weather conditions and fluctuating hydro-periods, and exhibit good nutrient removal capabilities.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期404-414,共11页 环境科学学报(英文版)
基金 the support & contributions of the Singapore-Delft Water Alliance (SDWA)
关键词 chlorophyll fluorescence nitrate and phosphate removal Pandanus amaryllifolius water quality chlorophyll fluorescence nitrate and phosphate removal Pandanus amaryllifolius water quality
  • 相关文献

参考文献1

二级参考文献5

共引文献30

同被引文献122

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部