期刊文献+

Rhodamine 6G-based Chemosensor for the Visual Detection of Cu2+ and Fluorescent Detection of Hg2+ in Water 被引量:1

Rhodamine 6G-based Chemosensor for the Visual Detection of Cu2+ and Fluorescent Detection of Hg2+ in Water
原文传递
导出
摘要 A novel water soluble chemosensor 1 based on rhodamine 6G spirolactam scaffold has been synthesized and characterized.Upon addition of a wide range of the environmentally and biologically relevant metal ions,chemosensor 1 shows a colorimetric selective Cu2+ recognition from colorless to pink confirmed by UV-Vis absorption spectral changes,while it also exhibits a fluorometric selective Hg2+ recognition by fluorescence spectrometry.An absorption enhancement factor over 17-fold with 1-Cu2+ complex and a fluorescent enhancement factor over 45-fold with 1-Hg2+ complex were observed.Their recognition mechanisms were assumed to be a 1:1 stoichiometry for 1-Cu2+ complex and a 1:2 stoichiometry for 1-Hg2+ complex,respectively,which were proposed to be different ligation leading to the ring-opening of rhodarnine 6G spirolactam.Furthermore,the detection limits for CU2+ or Hg2+ were 3.3 × 10-8 or 1.7x 10-7 mol/L,respectively. A novel water soluble chemosensor 1 based on rhodamine 6G spirolactam scaffold has been synthesized and characterized.Upon addition of a wide range of the environmentally and biologically relevant metal ions,chemosensor 1 shows a colorimetric selective Cu2+ recognition from colorless to pink confirmed by UV-Vis absorption spectral changes,while it also exhibits a fluorometric selective Hg2+ recognition by fluorescence spectrometry.An absorption enhancement factor over 17-fold with 1-Cu2+ complex and a fluorescent enhancement factor over 45-fold with 1-Hg2+ complex were observed.Their recognition mechanisms were assumed to be a 1:1 stoichiometry for 1-Cu2+ complex and a 1:2 stoichiometry for 1-Hg2+ complex,respectively,which were proposed to be different ligation leading to the ring-opening of rhodarnine 6G spirolactam.Furthermore,the detection limits for CU2+ or Hg2+ were 3.3 × 10-8 or 1.7x 10-7 mol/L,respectively.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2014年第1期32-36,共5页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(Nos.21272172, 21074093, 21004044) and the Natural Science Foundation of Tianjin City, China(No. 12JCZDJC21000).
关键词 Rhodamine 6G Chemosensor Cu2+ Hg2+ Rhodamine 6G Chemosensor Cu2+ Hg2+
  • 相关文献

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部