摘要
The thermal decomposition kinetics of 1-amino-l,2,3-triazolium nitrate(ATZ-NO3) was investigated by non-isothermal TG-DTG at various heating rates(2,5,10,15 and 20 ℃/min).The results show that the thermal decomposition of ATZ-NO3 consists of two stages corresponding to the losing of nitrate anion,substituent group and the splitting of triazole ring respectively.The kinetic triplets of the two stages were described by a three-step method.First,the differential Kissinger and intergral Ozawa methods were used to calculate the apparent activation energies(E) and pre-exponential factors(A) of the two decomposition stages.Second,two calculation methods(intergral (S)atava-(S)esták and differential Achar methods) were used to obtain several probable decomposition mechanism functions.Third,three judgment methods(average,double-extrapolation and Popescu methods) were used to confirm the most probable decomposition mechanism functions.Both reaction models of the two stages were randominto-nucleation and random-growth mechanisms with n=3/2 for the first stage and n=1/3,m=3 for the second stage.The kinetic equations for the two decomposition stages of ATZ-NO3 may be expressed as da/dt=1013.60·e-128970/RT(1-α)[-1n(1-α)]-1/2 and da/dt=1011.41·e-117370/RT(1-α)[-1n(1-α)]-2/3.The thermodynamic parameters including Gibbs free energy of activation(△G≠),entropy of activation(△S≠) and enthalpy of activation(△H≠),for the thermal decomposition reaction were also derived.
The thermal decomposition kinetics of 1-amino-l,2,3-triazolium nitrate(ATZ-NO3) was investigated by non-isothermal TG-DTG at various heating rates(2,5,10,15 and 20 ℃/min).The results show that the thermal decomposition of ATZ-NO3 consists of two stages corresponding to the losing of nitrate anion,substituent group and the splitting of triazole ring respectively.The kinetic triplets of the two stages were described by a three-step method.First,the differential Kissinger and intergral Ozawa methods were used to calculate the apparent activation energies(E) and pre-exponential factors(A) of the two decomposition stages.Second,two calculation methods(intergral (S)atava-(S)esták and differential Achar methods) were used to obtain several probable decomposition mechanism functions.Third,three judgment methods(average,double-extrapolation and Popescu methods) were used to confirm the most probable decomposition mechanism functions.Both reaction models of the two stages were randominto-nucleation and random-growth mechanisms with n=3/2 for the first stage and n=1/3,m=3 for the second stage.The kinetic equations for the two decomposition stages of ATZ-NO3 may be expressed as da/dt=1013.60·e-128970/RT(1-α)[-1n(1-α)]-1/2 and da/dt=1011.41·e-117370/RT(1-α)[-1n(1-α)]-2/3.The thermodynamic parameters including Gibbs free energy of activation(△G≠),entropy of activation(△S≠) and enthalpy of activation(△H≠),for the thermal decomposition reaction were also derived.