期刊文献+

基于响应面法优化电絮凝处理含砷冶炼废水的研究 被引量:7

Research on the response surface method applied to the optimized electrocoagulation used for the treatment of arsenic-containing smelting wastewater
下载PDF
导出
摘要 利用电絮凝法处理含砷铜冶炼废水,采用单因素实验及响应面法对影响因素进行了研究,优化了处理条件,并运用XPS技术测定了固体中As、Fe的存在形式,探讨了作用机理。结果表明,响应曲面模型对电絮凝除砷行为拟合较好;在拟合的最佳条件下处理此冶炼废水,砷的去除率可达99%以上。XPS分析结果表明,固体中的Fe主要以Fe3+形式存在;部分As3+发生了氧化反应,生成了As5+。 Arsenic/copper-containing smelting wastewater has been treated by electro-coagulation process. The in- fluencing factors have been studied by single-factor tests and response surface method, and the treatment conditions optimized. The existing forms of As and Fe in solid have been determined by XPS techniques, and its action mecha- nisms discussed. The results show that the response curved surface model fits the arsenic removing behavior quite well. The arsenic removing rate can be above 99%, if the smelting wastewater is treated under optimal conditions fit- ted. XPS analysis results show that Fe in solid exists mainly in form of Fe3+. Part of As3+ has oxidation reaction and forms As5+.
出处 《工业水处理》 CAS CSCD 北大核心 2014年第2期26-29,共4页 Industrial Water Treatment
基金 国家十一五"水体污染控制与治理"科技重大专项增补课题(2010ZX07212-008) 湖南省科技厅社会发展科技支撑计划重点项目(2011SK2016) 湖南省高校创新平台(重金属污染控制)开放基金项目(11k070)
关键词 电絮凝 响应面法 铜冶炼废水 electro-coagulation response surface method arsenic copper smehing wastewater
  • 相关文献

参考文献10

  • 1Kumar P R,Chaudhari S,Khilar K C. Removal of arsenic from water by electrocoaglulation[J].{H}CHEMOSPHERE,2004,(9):1245-1252.
  • 2Parga J R,Cocke D L,Valverde V. Characterization of electrocoagulation for removal of chromium and arsenic[J].{H}Chemical Engineering & Technology,2005,(5):605-612.
  • 3Kobay M,Ulu F,Gebologlu U. Treatment of potable water containing low concentration of arsenic with electrocoagulation:Different connection modes and Fe-Al electrodes[J].{H}Separation and purification technology,2011,(3):283-293.
  • 4Roberts L C,Hug S J,Ruettimann T. Arsenic removal with Iron (Ⅱ) and Iron(Ⅲ) in waters with high silicate and phosphate concentrations[J].{H}Environmental Science and Technology,2004,(1):307-315.
  • 5Lakshmanan D. A systematic study of arsenic removal from drinking water using coagulation-filtration and electrocoagulation-filtration[D].Houston:University of Houston,2007.1-226.
  • 6Vaclavikova M,Gallios G P,Hredzak S. Removal of arsenic from water streams:An overview of available techniques[J].Clean Techn Environ Policy,2008,(1):89-95.
  • 7Paposo J C,Sanz J,Zuloaga O. The thermodynamic model of inorganic arsenic species in aqueous solutions potentiometric study of the hydrolytic equilibrium of arsenic acid[J].{H}Journal of Solution Chemistry,2003,(3):253-264.
  • 8Sherman D M,Randall S R. Surface complexation of arsenic(Ⅴ) to iron (Ⅲ) (hydr)oxides:Structural mechanism from ab initio molecular geometeries and EXAFS spectroscopy[J].{H}Geochimica et Cosmochimica Acta,2003,(22):4223-4230.
  • 9Ladeira A C Q,Ciminelli V S T,Duarte H A. Mechanism of anion retention from EXAFS and density functional calculations:Aresnic(Ⅴ) adsorbed on gibbsite[J].{H}Geochimica et Cosmochimica Acta,2001,(8):1211-1217.
  • 10Bang S,Johnson M D,Korfiatis G P. Chemical reactions between arsenic and zero-valent iron in water[J].{H}Water Research,2005,(5):763-770.

同被引文献82

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部