期刊文献+

深海漂浮式风力机整机结构动态特性建模与仿真 被引量:1

Dynamic Characteristics Modeling and Simulation of Entire Deep-sea Floating Wind Turbine
下载PDF
导出
摘要 深海风力机因其役环境的复杂性,在产品开发阶段需要对各种载荷条件下的整机结构特性进行分析,并开发相应的分析或仿真系统。在已有研究基础上,开发了深海漂浮式风力机整机仿真系统,该系统主要由风力机气动模块、漂浮式海洋平台水动力模块和整机结构动力学模块三部分组成。其仿真算法核心为采用动态子结构法将水动力载荷与气动载荷同时加载到整机结构动力学模块界面上,实现气动和水动耦合条件下结构动力学特性的求解。为检验仿真模型的可信性,利用该系统对NREL基准的5MW漂浮式风力机进行结构动力学仿真分析。结果表明该模型可以求解气动和水动耦合条件下结构动力学问题。同时,研究表明深海漂浮式风力机在风与海浪载荷条件下,其漂浮式平台会产生相应的摇荡运动,气动与水动力载荷相互耦合对结构动力响应及功率波动有着显著影响。 Because of the operating environment complexity of deep-sea Floating Wind Turbine, it is necessary to calculate and analyze the whole structure characteristics under different loading conditions, and develop the corresponding simulation system in the phase of product development. On the basis of former achievement, deep-water floating wind turbine structure dynamics model was constructed. This model is mainly composed by three parts, a wind turbine aerodynamics module, a floating offshore platform hydrodynamic module and a structural dynamics module. The core simulation algorithm is a dynamic substructure method, which puts the hydrodynamic load and aerodynamic load into the interface of structure dynamics module. It implements the solving of the structural dynamic equation under the aerodynamic and hydrodynamic coupling conditions. In order to test the feasibility of the simulation model, this model was used for the whole dynamics simulation analysis of NREL benchmark 5MW floating wind turbine. The results show that the simulation model can solve the problem of structural dynamics in aerodynamic and hydrodynamic in coupling condition. At the same time, the results indicate that floating platform of deep floating wind turbine will generate the corresponding motions under the wind and wave loading conditions, which has a significant impact of structures response and the power fluctuations under aerodynamic and hydrodynamic coupling load.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第2期481-488,共8页 Journal of System Simulation
基金 国家自然科学基金(E51176129) 上海市创新基金(13ZZ120 13YZ066) 上海市研究生创新基金(WCXSL1021)
关键词 漂浮式风力机 动态仿真 假设模态法 海洋水动力学 floating wind turbine dynamic simulation assumed modal analysis method Marine hydrodynamics
  • 相关文献

参考文献11

  • 1Jonkman J M, Larsen T, Hansen A, et al. Offshore Code Comparison Collaboration within lEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint JR]. National Renewable Energy Laboratory (NREL), Golden, CO., 2010.
  • 2高伟,李春,刘全.深海漂浮式风力机的概念设计与气动—水动力耦合特性评述[J].能源研究与信息,2011,27(3):168-173. 被引量:10
  • 3Pitt D M, Peters D A. Theoretical Prediction of Dynamic-Inflow Derivatives [J]. Vertica (S0360-5450), 1981, 5(1): 21-34.
  • 4Peters D A, Boyd D D, He C-J. Finite-State Induced-Flow Model for Rotors in Hover and Forward Flight [J]. JAHS (Journal of the American Helicopter Society) (S0002-8711), 1989, 34(4): 5-17.
  • 5Cheng-jian He. Development and Application of a Generalized Dynamic Wake Theory for Lifting Rotors [D]. USA: Georgia Institute of Technology, 1990.
  • 6Suzuki A. Application of Dynamic Inflow Theory to Wind TurbineRotors [D]. USA: University of Utah, 2000.
  • 7Kane T R., Levinson D A. Formulation of Equation of Motion for Complex Spacecraft [J]. Journal of Guidance, Control and Dynamics (S0731-5090), 1980, 3(2): 99-112.
  • 8Wilson R E, Walker S N, Heh P. Technical and User's Manual for the FAST AD Advanced Dynamics Code [R]//OSU/NREL Report 99-01. Corvallis, Oregon, USA: Oregon State University, 1999.
  • 9Morison J R, O'Brien M P, Johnson J W, et al. The Force Exerted bySurface Waves on Piles [J]. Journal of Petroleum Technology (S0022-3522), 1950, 2(5): 149-154.
  • 10Jonkman J M. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine [D]. Boulder, CO, USA: University of Colorado, 2007.

二级参考文献10

  • 1AUBAULT Alexia, CERMELLI Christian A, RODDIER Dominique G Parametric optimization of a semi-submersible platform with heave plates[A]. Proc OMAE'07, 26th International Conference on Offshore Mechanics and Arctic Engineering[C]. San Diego: MIT Press, 2007, 32-40.
  • 2ZAMBRANO T, Maccready T, K/CENIUK T, et al. Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions [J]. OMAE, 2006, 8 (4): 24-29.
  • 3Website for the Blue-H floating wind turbine prototype in Brindisi harbor[EB/OL] . http://www.bluehgroup.com, accessed on September 23, 2009.
  • 4VIJFHUIZEN W J M J. Design of a wind and wave power barge [D]. Glasgow: Department of Naval Architecture and Mechanical Engineering, Universities of Glasgow and Strathclyde, Glasgow, Scotland, September 2006.
  • 5HENDERSON A R, LEUTZ R, FUJII T. Potential for floating offshore wind energy in Japanese waters [A], Proceedings of The Twelfth (2002) International Offshore and Polar Engineering Conference [C]. Kitakyushu, Japan, 2002, 26-31.
  • 6LEE K H, SCLAVOUNOS P D, WAYMAN E N. Floating wind turbines [A], Workshop on Water Waves and Floating Bodies [C]. IWWWFB, 2005, 418-418.
  • 7FULTON G R, MALCOLM D J, MOROZ E. Design of a semi-submersible platform for a 5 mw wind turbine [A], Reno. 44th AIAA Aerospace Sciences Meeting and Exhibit EC]. American Institute of Aeronautics, 2006, 9-12.
  • 8Website for the SWAY~ System, SWAY A/S[EB/OL]. http://www.sway.no/company.htm#home accessed on September 23, 2009.
  • 9BUTTERFIELD Sandy, MUSIAL Walt, JONKMAN Jason, et al. Engineering challenges for floating offshore wind turbines [A]. Copenhagen Offshore Wind 2005 Conference and Expedition Proceedings [C], Copenhagen, 2005, 25-28.
  • 10俞丽珍 陈熙源 黄丽娟.[A]..中国家用电器技术大会论文集[C].西安,北京:中国家用电器协会,2002.155.

共引文献9

同被引文献17

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部