期刊文献+

肺炎链球菌自溶酶(LytA)蛋白T细胞表位的预测、筛选及确定 被引量:2

Predication and identification of T cell epitopes of Streptococcus Pneumoniae LytA protein
下载PDF
导出
摘要 目的确定肺炎链球菌自溶酶(LytA)蛋白CD4 T细胞及CD8 T细胞的表位。方法通过生物信息学方法预测肺炎链球菌LytA蛋白分子小鼠的MHC-Ⅰ结合肽(CD8 T细胞表位)和MHC-Ⅱ结合肽(CD4 T细胞表位)序列并人工合成相应肽段;经诱导表达、纯化、透析、去内毒素、定量等步骤得到纯化的rLytA蛋白用以免疫小鼠;分离每只免疫组小鼠和对照组小鼠的脾及淋巴结细胞并分别与每条人工合成的候选表位肽段体外共培养,取培养上清进行双夹心ELISA检测每组细胞IFN-γ的产生情况;用初步筛选到的表位多肽刺激小鼠的脾及淋巴结细胞并进行细胞内染色及细胞流式技术检测,筛选出LytA蛋白分子T细胞表位。结果利用多种方法分析了LytA蛋白分子的MHC-Ⅰ结合肽及MHC-Ⅱ结合肽,经整理得到候选MHC-Ⅰ结合肽26条,候选MHC-Ⅱ结合肽7条,并进行了人工合成。利用分子生物学技术获得了rLytA蛋白并成功免疫了小鼠;双夹心ELISA结果初步提示:肽段LⅠ4、LⅠ5、LⅠ6、LⅠ7、LⅠ11、LⅠ12、LⅠ13、LⅠ14、LⅠ25以及肽段LⅡ3、LⅡ4、LⅡ5刺激免疫小鼠细胞产生的IFN-γ量比相应的对照小鼠显著升高;细胞流式技术进一步确定:经肽段LⅠ4、LⅠ6、LⅠ7、LⅠ11、LⅠ12、LⅠ13、LⅠ14及LⅠ25刺激后,免疫小鼠细胞中IFN-γ和CD8双阳性的细胞百分比较对照小鼠细胞的百分比显著升高;经肽段LⅡ4和LⅡ5刺激后,免疫小鼠细胞中IFN-γ和CD4双阳性的细胞百分比较对照小鼠细胞的百分比显著升高。结论确定了肺炎链球菌LytA蛋白分子2个CD4 T细胞及8个CD8 T细胞的表位。 Autolysin (LytA) is a major candidate antigen for vaccine against Streptococcus pneumoniae infection. To identify CD4 T cell and CD8 T cell epitopes of LytA, we predicted and synthesized both MHC- I binding peptides (CD8 T cell epitopes) and MHC- Ⅱ binding peptides (CD4 T cell epitopes) by bioinformatics methods. Purified rLytA was obtained through molecular biology methods and used to immunize mice. Then cells of spleen and lymph node were separated from immunized mice and negative control mice and cultured with synthesized peptides respectively, and then the cell supernate was collected to detect IFN-γ secretion by double sandwich ELISA. Every primly selected epitope were used to stimulate cells, and then intracellular cytokine staining and flow cytometric analysis were performed to identify T cell epitopes. Double sandwich ELISA showed 9 of MHC- I peptides and 3 of MHC- 11 peptides could stimulated significant higher IFN-γ secretion, as compared with control group; Flow cytometric analysis suggested that after stimulation by 8 of MHC- I peptides, the percentage of CD8 and IFN-γ double positive cells were significant higher in immunized mice than that in negative control group; while the percentage of CD4 and IFN-γ double positive cells were significant higher in immunized mice than that in negative control group after been stimulated by 2 of MHC-Ⅱ peptides. In conclusion, we identified amino acid seauence and location of two CD4 T cell epitopes and eight CD8 T cell epitopes of Streptococcus pneumoniae LytA protein which will help to develop epitope-based vaccine.
出处 《免疫学杂志》 CAS CSCD 北大核心 2014年第1期21-28,共8页 Immunological Journal
基金 国家自然科学基金(81072491) 广州市高校科技基金(10173,08A097) 广州市重点学科建设项目(B127007)
关键词 肺炎链球菌 自溶酶 T细胞表位 Streptococcus pneumoniae LytA Tcell epitope
  • 相关文献

参考文献21

  • 1Klein DL Pneumococcal disease and the role of conjugate vaccines[J]. Microb Drug Resist, 1999, 5(2): 147-157.
  • 2Ip M, Lyon D, Yung RW, et al. Evidence of clonal dissemination of multiple drug-resistant Streptococcus pneumoniae in Hong Kong.[J] J. Clin Microbiol, 1999, 37(8): 2834-2839.
  • 3Huang SS, Hinrichsen VL, Stevenson AE, et al. Continued impact of pneumococcal conjugate vaccine on carriage in young children[J]. Pediatrics, 2009, 124(1): el-el 1.
  • 4Bogaert D, Hermans PW, Adrian PV, et al. Pneumococeal vaccines: an update on current strategies[J]. Vaccine, 2004, 22(17/18): 2209-2220.
  • 5袁竹青,吴忠道,余新炳,张扣兴,郑焕钦,徐劲.肺炎链球菌不同菌株自溶酶基因的克隆、序列分析及重组表达[J].中华传染病杂志,2005,23(2):87-90. 被引量:5
  • 6Yuan ZQ, Lv ZY, Gan HQ, et al. Intranasal immunization with autolysin (LytA) in mice model induced protection against five prevalent Streptococcus pneumoniae serotypes in China. [J] Immunol Res, 2011, 51(1): 108-115.
  • 7Borges O, Lebre F, Bento D, et al. Mucosal vaccines: recent progress in understanding the natural barriers [J]. Pharm Res, 2010, 27(2): 211-223.
  • 8Nielsen M, Lundegaard C, Worning P, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations.[J]. Protein Sci, 2003, 12 (5): 1007-1017.
  • 9Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method[J]. BMC Bioinformatics, 2005, 6: 132.
  • 10Bui HH, Sidney J, Peters B, et al. Automated generation and evaluation of speeifie MHC binding predictive tools: ARB matrix applications[J]. Immunogeneties, 2005, 57(5):304-314.

二级参考文献27

  • 1陈钰,钟江,徐健,陈中才,张继慧,金婷.超抗原SEB活化的NKT细胞亚群及耐受功能的研究[J].免疫学杂志,2009(1):23-26. 被引量:4
  • 2F.奥斯伯 R.布伦特 等.精编分子生物学实验指南[M].北京:科学出版社,2001..
  • 3Jedrzejas MJ. Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev, 2001, 65 : 187-207.
  • 4J.萨姆布鲁克 E.F.弗里奇 T.曼尼阿蒂斯 著.金冬雁 黎孟枫 译.侯云德 校.分子克隆实验指南.第2版[M].北京:科学出版社,2002.881-885.
  • 5Briese T. Hakenbeck R. Interaction of the pneumococcal amidase with lipoteichoic acid and choline. Eur J Biochem, 1985,146:417-427.
  • 6Berry AM, Lock RA, Hansman D, et al. Contribution of autolysin to virulence of streptococcus pneumoniae. Infect Immun, 1989, 57: 2324-2330.
  • 7Berry AM, Paton JC. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun, 2000, 68:133-140.
  • 8Tomasz A, Albino A, Zanati E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature,1970, 227: 138-140.
  • 9Liu HH, Tomasz A. Penicillin tolerance in multiply drug-resistant natural isolates of streptococcus pneumoniae. J Infect Dis, 1985, 152: 365-372.
  • 10Sanchez-puelles JM, Ronda C, Garcia JI., et al. Searching for autolysin functions characterization of a pneumococcal mutant deleted in the LytA gene. Eur J Biochem, 1986, 158: 289-296.

共引文献8

同被引文献17

  • 1Douglas JM Jr. Penicillin treatment of syphilis: clearing away the shadow on the land[J]. JAMA, 2009, 301(7): 769- 771.
  • 2Tucker JD, Cohen MS. China's syphilis epidemic: epidemiology, proximate determinants of spread, and control responses[J]. Curr Opin Infect Dis, 20l 1, 24(1): 50- 55.
  • 3Cameron CE, Lukehart SA. Current status of syphilisvaccine development: need, challenges, prospects [J]. Vaccine, 2014, 32(14): 1602-1609.
  • 4Cullen PA, Cameron CE. Progress towards an effective syphilis vaccine: the past, present and future[J]. Expert Rev Vaccines, 2006, 5(1): 67-80.
  • 5Desrosiers DC, Anand A, Luthra A, et al. TP0326, a Treponema pallidum I-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein[J]. Mol Microbiol, 2011, 80(6): 1496-515.
  • 6Cameron CE, Lukehart SA, Castro C, et al. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92 [J]. J Infect Dis, 2000, 181(4): 1401-1413.
  • 7Zhao F, Wu Y, Zhang X, et al. Enhanced immune response and protective efficacy of a Treponema pallidum Tp92 DNA vaccine vectored by chitosan nanoparticles and adjuvanted with IL-2[J]. Hum Vaccin, 2011, 7(10): 1083- 1089.
  • 8Pishraft Sabet L, Taheri T, Memarnejadian A, et al. Immunogenicity of multi-epitope DNA and peptide vaccine candidates based on core, E2, NS3 and NS5B HCV epitopes in BALB/c mice[J]. Hepat Mon, 2014, 14(10): e22215.
  • 9Murphy KP, Travers P immunobiology [M]. 74 ed. 2008: 695-696.
  • 10Walpoa M. Janeway" s New York: Garland Science, Cullen PA, Cameron CE. Progress towards an effective syphilis vaccine: the past, present and future[J]. Expert Rev Vaccines, 2006, 5(1): 67-80.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部