期刊文献+

基于指纹识别特征选择的改进加权KNN算法 被引量:3

Improved Weighted KNN Algorithm Based on Fingerprint Recognition Feature Selection
下载PDF
导出
摘要 KNN是最著名的模式识别统计学方法之一。它是一种无参数分类方法,由于其分类的简单有效性,因此得到较为广泛的应用。但是对KNN分类系统的全面评价还有待进一步研究。提出的改进加权KNN算法相比之下具有更高和更加稳定的识别率。因为它在经典KNN算法基础上增加加权距离和类间相似度信息,比经典KNN这种单纯依靠投票的分类方法更加可靠,在分类识别研究中更具有研究和应用价值。 KNN is one of the most famous statistical methods of pattern recognition. It is a non-parametric classification method, due to the simple effectiveness of its classification, so it has been more widely used. Further research needs to be a comprehensive evaluation of the KNN classification system. Proposes an improved weighted KNN algorithm, which has a higher and more stable compared to the recognition rate. Because it increases the degree of similarity between the weighted distance and class information in the classic KNN algorithm, based on the classic KNN than relying solely on the classification of this vote is more reliable, more research and application in classification study.
作者 周奇
出处 《现代计算机(中旬刊)》 2014年第1期27-29,共3页 Modern Computer
基金 广州市高等学校第五批教育教项目(No.JG201337) 广东省高职教育教学管理委员会项目(No.JGW2013070)
关键词 KNN 改时加权 加权距离 类间相似度 KNN (K-Nearest Neighborhood) Changed Weighted Weighted Distance Similarity Between Classes
  • 相关文献

参考文献1

  • 1AndrewR.Webb.统计模式识别(第二版)(王萍,杨培龙等译).北京:电子工业出版社,2004,106一112.

同被引文献32

  • 1杨斌,匡立春,孙中春,施泽进.一种用于测井油气层综合识别的支持向量机方法[J].测井技术,2005,29(6):511-514. 被引量:26
  • 2Rutkowski L,Jaworski M, Pietruczuk L, et al. The CARTdecision tree for mining data streams ! J ]. Information Sci- ences ,2014,266 : 1-15.
  • 3Jiang Liangxiao, Cai Zhihua, Wang Dianhong, et al. Bayes- ian citation-KNN with distance weighting[J]. International Journal of Machine Learning and Cybernetics, 2014, 5 (2) :193-199.
  • 4Bollen K A,Harden J J,Ray S,et al. BIC and alternative Bayesian information criteria in the selection of structural equation models [ J ]. Structural Equation Modeling: A Muhidisciplinary Journal ,2014,21 ( 1 ) : 1-19.
  • 5Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification [ J ]. Physical Review Letters ,2014,113 ( 13 ) : 130503.
  • 6Utkin L V,Zhuk Y A. Robust boosting classification mod- els with local sets of probability distributions [ J ]. Knowl- edge-Based Systems,2014,61:59-75.
  • 7Vapnik V N, Vapnik V. Statistical learning theory [ M ]. New York: Wiley, 1998.
  • 8Hastie T, Tibshirani R, Friedman J, et al. The elements of statistical learning [ M ]. New York: Springer,2009.
  • 9Bermejo S, Cabestany J. Large margin nearest neighbor classifiers [ M ]. Springer Berlin Heidelberg, 2001,84: 669-676.
  • 10Domeniconi C, Gunopulos D, Peng J. Large margin nearest neighbor classifiers [ J 1. Neural Networks, IEEE Transac- tions on, 2005,16 (4) : 899-909.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部