期刊文献+

常挠率运动曲线生成曲面上的贝克隆变换

Bcklund Transformations on Surfaces Swept out by Moving Curves with Constant Torsion
下载PDF
导出
摘要 该文给出由常挠率运动曲线生成曲面上的贝克隆变换,其中运动曲线的曲率满足修正KdV方程,从而得到著名的对于修正KdV方程贝克隆变换的一个几何实现.作为应用,取圆柱面作为种子曲面,构造了一些由周期运动曲线生成的新曲面,其中周期运动曲线在xy平面上的投影是闭曲线. We give Backlund transformations on surfaces which are swept out by moving curves with constant torsion. The curvature of the moving curve discussed in this paper is governed by the modified KdV equation. Our result can be regarded as a geometric realization of the well-known Baicklund transformation for the modified KdV equation. As applications, by taking the circular cylinder as a seed surface, we construct some novel surfaces which are swept out by moving periodic curves whose projections to the xy-plane are closed.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第1期115-125,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(11071208)资助
关键词 曲线运动 曲率和挠率 可积系统 贝克隆变换 Motion of curves Curvature and torsion Integrable system Backlund transfor-mation.
  • 相关文献

参考文献13

  • 1Chou K S,Qu C. Integrable equations arising from motions of plane curves[J].PHYSICA D,2002.9-33.
  • 2Doliwa A,Santini P. An elementary geometric characterisation of the integrable motions of a curve[J].Physics Letters A,1994.373-384.
  • 3Goldstein R E,Petrich D M. The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane[J].Physical Review Letters,1991.3203-3206.
  • 4Hasimoto H. A soliton on a vortex filement[J].Journal of Fluid Mechanics,1972.477-485.
  • 5Kambe T,Tako T. Motion of distorted vortex rings[J].Journal of The Physical Society of Japan,1971.591-599.
  • 6Laksmanan M,Ruijgrok T W,Thompson C J. On the dynamics of a continuum spin system[J].PHYSICA A,1976.577-590.
  • 7Lamb G L. B(a)cklund transformations for certain nonlinear evolution equations[J].Journal of Mathematical Physics,1974.2157-2165.
  • 8Lamb G L. Solitons on moving space curves[J].Journal of Mathematical Physics,1977.1654-1661.
  • 9Nakayama K,Segur H,Wadati M. Integrability and the motion of curves[J].Physical Review Letters,1992.2603-2606.
  • 10Nakayama K,Wadati M. Motion of curves in the plane[J].Journal of The Physical Society of Japan,1993.473-479.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部