摘要
首先定义了集值优化问题的m阶局部严格有效解并在赋范空间中研究了解的一些性质.在一定条件下,利用Dini导算子和支撑函数确立了m≥1阶严格有效解存在的充分必要条件.
In this paper, the notion of local strict minimum of order rn (rn 〉1) for vector optimization problems is extended from single-valued maps to set-valued maps. Some properties and characterizations are then investigated in normed spaces. Furthermore, necessary and sufficient conditions for strict minimum of orders rn 〉1 are established by using Dini derivatives and support functions.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2014年第1期193-206,共14页
Acta Mathematica Scientia
基金
国家自然科学基金(61373174
11371015)
教育部科学技术重点项目(211163)
四川省青年科技基金(2012JQ0032)资助
关键词
集值优化
一
二阶最有性条件
支撑函数
严格最优解
Dini导算子
切锥
Set-valued optimization
First and second order optimality
Support function
Strict minimum
Dini derivative
Tangent cone.