期刊文献+

基于改进SURF算子的高低分辨率图像配准方法 被引量:7

Registration method of high-low resolution images based on improved SURF
下载PDF
导出
摘要 针对激光三维成像传感器与可见光传感器图像分辨率差异较大,配准过程中特征点误匹配情况严重的问题,提出了一种基于改进SURF算子的高低分辨率图像配准方法。首先,采用双线性插值算法对低分辨率图像进行预处理,然后在经典SURF算子的基础上,采用最近邻向量匹配法完成SURF特征的粗匹配,并基于特征偏移一致性原则对匹配情况做进一步优化,最后结合RANSAC和最小二乘法求出图像之间的仿射关系,利用所求的变换参数插值得到配准后的图像。实验结果表明,该配准方法在保持配准速度的同时,结构相似性测量指数提高了约11%,进一步提高了配准的精度。 Due to the large resolution difference between the three-dimensional laser imaging sensor and visible ima-ging sensor,mismatching feature points are numerous.In order to solve this problem,a registration method of high-lowresolution images based on improved SURF is proposed.Firstly,low-resolution image is processed through bilinear in-terpolation.Subsequently,SURF feature′s coarse matching is completed by using the nearest neighbor vector based onthe classical SURF.The matching is further optimized according to feature shift coherence rule.Finally,affine relation-ship between the images is obtained by using SANSAC and least square method.The registration image is obtained byinterpolation based on affine transform parameters.The experiment shows that the proposed registration method cankeep the registration speed,structural similarity measure index is increased by about 11%,and meanwhile the accura-cy of registration is further improved.
出处 《激光与红外》 CAS CSCD 北大核心 2014年第2期207-212,共6页 Laser & Infrared
基金 国家高技术研究发展计划资助项目
关键词 图像处理 高低分辨率配准 特征偏移一致性 SURF image process high-low resolution images registration SURF feature shift coherence
  • 相关文献

参考文献19

二级参考文献180

共引文献242

同被引文献65

  • 1郭军.基于SURF的声纳图像配准与融合方法研究[J].测绘与空间地理信息,2013,36(3):56-58. 被引量:5
  • 2阳凡林,吴自银,独知行,金翔龙.多波束声纳和侧扫声纳数字信息的配准及融合[J].武汉大学学报(信息科学版),2006,31(8):740-743. 被引量:19
  • 3D F Figer, J Lee,B J Hanold,et al. A photo counting de- tector for explanet missions [ J ]. SPIE, 2011, 815:81510k.
  • 4Zhaoyang Z, Xiangzheng C, Hang C. Research on method of sensor self-calibration based on the characteristic of rectangular vanishing point [ C ]. Proc. SPIE8908, Interna- tional Symposium on Photoelectronic Detection and Ima- ging 2013 : Imaging Sensors and Applications, 89080C.
  • 5Bas T P, Mason D C, 1997. Automatic registration of TOBI side-scan and muti-beam bathymetry images for improved data fusion. Marine Geophysical Researches, 19(2): 163-176.
  • 6Bay H, Tuytelaars T, van Cool L, 2006. SURF:Speeded Up Robusts Fea- tures.The 9th European Comfercnce on Canputer Vision. Craz, Aus- tria.
  • 7Daniel S, Leannec F L, Roux C, et al, 1998. side-scan sonar images matching.IEEE Journal of Oceanic Engineering, 23(3): 245-259.
  • 8RI Hartley, 1992. Estimation of relative camera position for unealibrated cameras.Proceedings of the second European Conference on Com- puter Vision, Santa Margherita Ligure, Italy, ECCV, 34 (4): 579- 587.
  • 9赵小川,2011.现代数字图像处理技术提高及应用案例详解.北京航空航天大学出版社.
  • 10周定富,何明一,杨青.一种基于特征点的稳健无缝图像拼接算法[J].测控技术,2009,28(6):32-36. 被引量:13

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部