期刊文献+

基于制动稳定性要求的电动汽车制动力分配 被引量:22

Braking force distribution of electric vehicles based on braking stability
原文传递
导出
摘要 为进一步提高电动汽车的能量利用效率以改善其续驶里程,提出一种基于制动稳定性要求的电动汽车最优化能量回收制动力分配策略。通过对制动稳定性要求和ECE R13制动法规的分析,从理论上确定了纯电动汽车安全制动力的分配范围。考虑电机及蓄电池对能量回收的制约,在确定的安全制动范围内,分析了以最大限度回收制动能量为目标的制动力分配流程。将开发的制动控制策略嵌入ADVISOR 2002中,分别在城市道路工况和高速路工况下进行仿真。仿真结果表明:对比ADVISOR中缺省的制动力分配策略,提出的制动力分配策略在保证制动稳定性的要求下,回收能量和能量利用效率都有提高,城市道路工况能量回收提高幅度达163.4%。 In order to further improve the energy efficiency of electric vehicles, thus to improve the driving range, a braking force distribution strategy of electric vehicles was developed, which realized optimal energy recovery based on braking stability. The safe range of braking force dis- tribution was determined by analyzing braking stability requirements and the ECE R13 rules. Considering the restriction of motor and battery on energy recovery, the strategy with optimal energy recovery was established in the safe braking range. The simulation of this strategy was performed by ADVISOR 2002 in urban road and expressway driving cycle. The results show that the proposed braking force distribution strategy is more effective on energy recovery and energy efficiency than the default strategy in ADVISOR, and the increase rate of energy recovery reaches to 163.4% in urban road driving cycle. 3 tabs, 6 figs, 11 refs.
出处 《长安大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期103-108,共6页 Journal of Chang’an University(Natural Science Edition)
基金 国家高技术研究发展计划(863计划)资助项目(2012AA111106)
关键词 汽车工程 电动汽车 制动稳定性 制动力分配 最优化能量回收 automotive engineering electric vehicle braking stability braking force distribuoptimal energy recovery
  • 相关文献

参考文献3

二级参考文献23

  • 1李俊山.PWM变频器供电交流调速系统回馈制动的控制方案[J].陕西理工学院学报(自然科学版),1998,0(3):32-35. 被引量:1
  • 2过学迅,张靖.混合动力电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报(信息与管理工程版),2005,27(1):116-120. 被引量:29
  • 3余卓平,张立军,熊璐.四驱电动车经济性改善的最优转矩分配控制[J].同济大学学报(自然科学版),2005,33(10):1355-1361. 被引量:41
  • 4Ehsani M, Emadi A, Gao Y. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design[M]. London: CRC, 2005.
  • 5Cikanek S R, Bailey K E. Electric vehicle braking systems[ A]. The 14th International Electric Vehicle Symposium and Exposition[C] , Orlando. Florida, USA. Dec. 11-17, 1997.
  • 6Gao Y M, Ehsani M. Electronic Braking System of EV and HEV-integration of Regenerative Braking, Automatic Braking Force Control and ABS [ R ]. SAE paper 2001-01- 2478,2001.
  • 7Yeo H, Kim H. Regenerative braking algorithm for a hybrid electric vehicle with CVT ratio control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006,220( 11 ) :1589 ~ 1600.
  • 8Hellgren J, Jonasson E. Maximisation of brake energy regeneration in a hybrid electric parallel car[J]. International Journal Electric and Hybrid Vehicles, 2007,1 ( 1 ) :95 ~ 121.
  • 9Larminie J, Lowry J. Electric Vehide Technology Explained [ M ] : Wiley, 2003.
  • 10Chang C S, et al. Bicriterion optimisation for traction substations in mass rapid transit systems using genetic algorithm [ J ]. lEE Proceedings Electric Power Applications, 1998,145 ( 1 ).

共引文献38

同被引文献169

引证文献22

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部