摘要
运算电路的解析,常用部分因式展开法进行拉普拉斯反变换,以求取时域解。对象函数分母进行因式分解,可能出现复根情况的讨论,相关课程、文献分析不够深入,给出的求取原函数方法单一,解题容易出错。为此,对复根情况进行了较为深入的探讨,并提出了一种新颖的求解原函数的方法,消除了求解高阶象函数的原函数困惑,并很大提高了求取原函数的速度和准确率。
To solve time solution of operational equation by using Inverse Laplace Transforma- tion through partial factor summation. There are three situations to factorization of image function de- nominator, namely real single root, multiple root, complex roots. There is little information for analysis on complex roots with a few methods, that prone to error. Deep Analysis on high order image function and a new method were showed in this paper, to Improving solution of the equation of velocity and rate of accuracy.
出处
《安徽冶金科技职业学院学报》
2014年第1期36-39,共4页
Journal of Anhui Vocational College of Metallurgy and Technology
基金
安徽省重大教研项目
立项编号:2013ZDJY074
安徽省教育厅教研项目(2012jyxm189)
安徽工业大学教改项目(2011jg12
2013jg18)资助
关键词
运算电路
拉普拉斯逆变换
部分因式展开法
复根
配平方法
Operational Circuit, Inverse Laplace Transformation, Partial factor summationmethod, Complex root, Paired squareDeep analysis of partial factor summation for inverse Laplace trans-formation