期刊文献+

碳化锆液相陶瓷前驱体的制备及陶瓷化 被引量:5

Preparation and Ceramization of Liquid ZrC Precursor
下载PDF
导出
摘要 以聚锆氧烷PNZ为锆源、炔丙基酚醛PN为碳源制备了一种ZrC液相陶瓷前驱体PNZ-PN,该前驱体经1600℃热解能够转化为高度结晶的ZrC陶瓷。通过FT-IR、DSC、TGA对前驱体的固化过程及固化样的热失重行为进行了分析;通过XRD、元素分析和SEM对热解产物的晶相组成及微观形貌进行了分析。结果表明:1200℃以下,热解产物主要是ZrO2,1400℃时开始发生碳热还原反应出现结晶度较小的ZrC,经1600℃热解后可完全转化为ZrC;PN的加入量会影响热解过程中陶瓷样品的ZrO2晶相及1600℃热解产物的碳含量,通过调整PN的加入量最终可得到自由碳含量1.66%、近似纯相的ZrC陶瓷;得到的陶瓷粒子Zr、C元素分布均匀、粒径主要分布为100~200nm。 A novel liquid precursor for ZrC was prepared by blending of polyzirconoxanesal (PNZ) and proparg- yl modified novolac resin(PN). The precursor could be converted into ZrC upon heat treatment at 1 600℃. The cross- linking behavior of PNZ-PN precursor was characterized by FF-IR and DSC. The thermal stability of the cured PNZ- PN was evaluated by TGA. The microstrueture and components of the ceramic samples were analyzed by XRD, SEM and elements analysis. The results showed that the ceramic sample consisted of ZrO2 below 1 200℃ and low crystalline ZrC appeared initially at 1 400℃ due to carbothermal reduction. At 1 600℃, the ZrO2could be converted into pure ZrC completely. The ZrO2erystalline phase and carbon content in 1 600℃ceramic samples could be controlled by the amount of PN to get near pure phase ZrC with free carbon of 1.66%. The Zr, and C elements are well distributed in the ceramic sample consisted of high crystalline degrees of ZrC particles with a size distribution of 100 to 200 nm.
出处 《宇航材料工艺》 CAS CSCD 北大核心 2014年第1期79-83,共5页 Aerospace Materials & Technology
关键词 碳热还原反应 固化 热解 微观形貌 Carbothermal reduction, Cross-linking behavior, Pyrolysis, Microstructure
  • 相关文献

参考文献22

  • 1Han W B,Hu P,Zhang X H. High-temperature oxidation at 1 900℃ of ZrB2-x SiC ultrahigh-temperature ceramic composites[J].{H}Journal of the American Ceramic Society,2008.3328-3334.
  • 2Savino R,De Stefano Fumo M,Silvestroni L. Arcjet testing on HfB2 and HfC-based ultra-high temperature ceramic materials[J].{H}Journal of the European Ceramic Society,2008.1899-1907.
  • 3Karlsdottir S N,Halloran J W. Rapid oxidation characterization of ultra-high temperature ceramics[J].{H}Journal of the American Ceramic Society,2007.3233-3238.
  • 4Savino R,De Stefano Fumo M,Paterna D. Arc-jet testing of ultra-high-temperature-ceramics[J].{H}AEROSPACE SCIENCE AND TECHNOLOGY,2010.178-187.
  • 5Eakins E,Jayaseelan D D,Lee W E. Toward oxidationresistant ZrB2-SiC ultra high temperature ceramics[J].{H}Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2010.878-887.
  • 6Li Q G,Zhou H J,Dong S M. Fabrication of a ZrC-SiC matrix for ceramic matrix composites and its properties[J].{H}Ceramics International,2012.4379-4384.
  • 7Cai T,Qiu W F,Liu D. Synthesis,characterization,and microstructure of hafnium boride-based composite ceramics via preceramic method[J].{H}Journal of the American Ceramic Society,2013.1999-2004.
  • 8Lespade P,Richet N,Goursat P. Oxidation resistance of HflB2-SiC composites for protection of carbon-based materials[J].{H}ACTA ASTRONAUTICA,2007.858-864.
  • 9Cai T,Qiu W F,Liu D. Synthesis of soluble polyvne polymers coutaining zirconium and silicon and corresponding conversion to nanosized ZrC/SiC composite ceramics[J].{H}Dalton Transactions,2013.4285-4290.
  • 10Yu Z J,Yang L,Zhan J Y. Preparation,crosslinking and ceramization of AHPCS/Cp2ZrCl2 hybrid precursors for SiC/ZrC/C composites[J].{H}Journal of the European Ceramic Society,2012.1291-1298.

同被引文献100

  • 1LIAO GuangLan,ZUO HaiBo,CAO YanBo & SHI TieLin State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,Wuhan 430074,China.Optical properties of the micro/nano structures of Morpho butterfly wing scales[J].Science China(Technological Sciences),2010,53(1):175-181. 被引量:10
  • 2王其坤,胡海峰,郑文伟,马青松,简科,陈朝辉.C/C-SiC复合材料熔融渗硅制备工艺[J].材料导报,2005,19(7):93-96. 被引量:10
  • 3马彦,马青松,陈朝辉.先驱体作粘结剂低温制备SiC多孔陶瓷[J].稀有金属材料与工程,2007,36(A01):531-533. 被引量:3
  • 4EAKINS E, JAYASEELAN D D, LEE W E. Towardoxidation-resistant ZrB2-SiC ultra high temperature ceramics[J]. Metall Mater Trans A, 2011, 42(4): 878-887.
  • 5XIE C, CHEN M, WEI X, et al. Synthesis and microstructure of zirconium diboride formed from polymeric precursor pyrolysis[J]. J Am Ceram Soc, 2012, 95(3): 866-869.
  • 6KONT1NOS D A, GEE K, PRABHU D K. Temperature constraints at the sharp leading edge of a crew transfer vehicle[C]//AIAA Thermophysics Conference, 35th, Anaheim, 2001.
  • 7LI Q, ZHOU H, DONG S, et al. Fabrication of a ZrC-SiC matrix for ceramic matrix composites and its properties[J]. Ceram lnt, 2012, 38(5): 4379-4384.
  • 8LI H, ZHANG L, CHENG L, et al. Fabrication of 2D C/ZrC-SiCcomposite and its structural evolution under high-temperature treatment up to 1 800 .C[J]. Ceram Int, 2009, 35(7): 2831-2836.
  • 9JI Z, YE L, TAO X, et al. Synthesis of ordered mesoporous ZrC/C nanocomposite via magnesiothermic reduction at low temperature[J]. Mater Lett, 2012, 71: 88-90.
  • 10TAO X, QIU W, ZHAO T, et al. Synthesis of nanosized zirconium carbide from preceramic polymers by the facile one-pot reaction[J]. Polyms Adv Technol, 2010, 21(4): 300-304.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部