期刊文献+

AMPK/mTOR信号通路在DIO与DR大鼠胰腺中的表达

The role of mTOR signaling pathway in pancreas of Diet- Induced Obese(DIO) and diet resistance DR rats
下载PDF
导出
摘要 目的通过比较DIO大鼠和DR大鼠胰腺中AMPK/mTOR通路的变化探讨其对整个机体能量和代谢过程中的作用。方法建立食源性肥胖大鼠模型:100只体重均衡的大鼠随机分为①高脂饮食组(n=80)和②对照组(n=20),前者14周后根据体重分为肥胖(DIO)和肥胖抵抗(DR)两个亚组。通过免疫组化和免疫荧光的方法检测DIO和DR大鼠胰腺中AMPK/mTOR通路的表达变化。结果①14周后,高脂饮食组体重高于对照组体重(P<0.001),DIO与DR组之间体重相比有明显差异(P<0.001);②与DIO组相比,DR组大鼠胰腺的AMPK表达水平降低,mTOR下游的两个经典靶标S6K和4E-BP1表达水平明显增加。结论 DR大鼠胰腺AMPK水平降低,S6K和4E-BP1水平升高,说明AMPK抑制mTOR通路功能下降,导致胰岛α细胞分泌胰高血糖素增加,这可能是DR大鼠维持正常体重的原因之一。 Objective To explore the effects involved in body energy balance and metabolism by comparing the expression changes of AMPK/roTOR pathway in panereas between DIO and DR rats. Methods To establish obe- sity animal models 100 rats, which are matched in body weight are divided randomly into two groups 1 )high fat diet group (n = 80) and 2 )control group (n = 20). According to body weight, rats in the first goup are divided in- to DIO and DR after 14 weeks of high fat diet. Compare the activity of AMPK/mTOR pathway in pancreas of DIO and DR rats by using the methods of immunohistochemistry and immunofluorescence. Results 1 ) After 14 weeks, body weight of rats in high fat diet group exceed control group(P 〈0. 001 ). There is a statistically significant on body weight between DIO and DR rats(P 〈0. 001 ). 2)Compare with DIO rats, signals of AMPK in pancreas of DR rats are less active, while S6K and 4E - BPI are more active. Conclusion Pancreas of DR rats have less ac- tive of AMPK and more active of mTOR pathway, means that the function of AMPK inhibiting mTOR pathway is declined in DR rats whose α cells of pancreas secrete more glucagons than DIO rats. Maybe this is one of the reasons for maintaining healthy body weight in DR rats.
出处 《遵义医学院学报》 2014年第1期53-56,61,共5页 Journal of Zunyi Medical University
基金 国家自然科学基金资助项目(NO:81270927) 天津市高等学校科技发展基金项目(NO:20110108)
关键词 食源性肥胖 肥胖抵抗 AMPK mTOR 胰岛Α细胞 diet induced obesity diet resistant AMPK mTOR pancreas αcell
  • 相关文献

参考文献19

  • 1Nawroth R, Stellwagen F, Schulz W A, et al. S6K1 and dE - BP1 are independent regulated and control cellular growth in bladder cancer[ Jl. PLoS One, 2011,6( 11 ) : e27509.
  • 2Din F V, Valanciute A, Houde V P, et al. Aspirin inhib- its mTOR signaling, activates AMP- activated protein ki- nase, and induces autophagy in colorectal cancer cells [ J ]. Gastroenterology, 2012,142 (7) : 1504 - 1515.
  • 3Weijenberg M P, Hughes L A, Bours M J, et al. The roTOR Pathway and the Role of Energy Balance Throughout Life in Colorectal Cancer Etiology and Prognosis: Unravelling Mech- anisms Through a Multidimensional Molecular Epidemiologic Approach[J]. Curt Nutr Rep, 2013,2(1):19 -26.
  • 4Wullschleger S, Loewith R, Hall M N. TOR signaling in growth and metabolism[J]. Cell, 2006,124(3) :471 -484.
  • 5Zoncu R, Efeyan A, Sabatini D M. mTOR: from growth signal integration to cancer, diabetes and ageing[ J ] Nat Rev Mol Cell Biol, 2011,12( 1 ) :21 -35.
  • 6Garcia - Martinez J M, Alessi D R. mTOR complex 2 ( mTORC2 ) controls hydrophobic motif phosphorylation and activation of serum - and glucocorticoid - induced protein kinase 1 (SGKI) [ J ]. Biochem J, 2008,416 (3) :375 -385.
  • 7Guertin D A, Sabatini D M. Defining the role of roTOR in cancer [ J ]. Cancer Cell, 2007,12 ( 1 ) :9 - 22.
  • 8Mannaa M, Kramer S, Boschmann M, et al. mTOR and regulation of energy homeostasis in humans [ J ]. J Mol Med ( Berl), 2013,91 (10) : 1167 - 1175.
  • 9Shaw R J. LKB1 and AMP - activated protein kinase con- trol of mTOR signalling and growth [ J ]. Acta Physiol (Oxf), 2009,196( 1 ) :65 - 80.
  • 10Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth [ J ]. Cell, 2006,126 (5) : 955 - 968.

二级参考文献14

  • 1Alejandro R, Lehmann R, Ricordi C, et al. Long-term function (6 years) of islet allografts in type 1 diabetes. Diabetes, 1997, 46:1983-1989.
  • 2Oberholzer J, Triponez F, Mage R, et al. Human islet transplantation: lessons from 13 autologous and 13 allogeneic transplantations.Transplantation, 2000,69:1115-1123.
  • 3Jaeger C, Brendel MD, Hering BJ, et al. Progressive islet graft failure occurs significantly earlier in autoantibody-positive than in autoantibody-negative IDDM recipients of intrahepatic islet allografts. Diabetes,1997,46:1907-1910.
  • 4Lou J, Triponez F, Oberholzer J, et al. Expression of alpha-1 proteinase inhibitor in human islet microvascular endothelial cells. Diabetes, 1999,48:1773-1778.
  • 5Vajkoczy P, Olofsson AM, Lehr HA, et al. Histogenesis and ultrastructure of pancreatic islet graft microvasculature. Evidence for graft revascularization by endothelial cells of host origin. Am J Pathol,1995,146:1397-1405.
  • 6Pipeleers D, in′t Veld PI, Maes E, et al.Glucose-induced insulin release depends on functional cooperation between islet cells. Proc Natl Acad Sci U S A, 1982,79:7322-7325.
  • 7Ricordi C, Lacy PE, Scharp DW. Automated islet isolation from human pancreas. Diabetes,1998, 38 Suppl 1:140-142.
  • 8Yantyghem MC, Kerr-Conte J, Pattou F, et al. I mmunohistochemical and ultrastructural study of adult porcine endocrine pancreas during the different steps of islet isolation. Histochem Cell Biol, 1996,106:511-519.
  • 9el-Naggar MM, Elayat AA, Ardawi MS, et al. Isolated pancreatic islets of the rat: an i mmunohistochemical and morphometric study. Anat Rec,1993,237:489-497.
  • 10Korbutt GS, Rayat GR, Ezekowitz J, et al. Cryopreservation of rat pancreatic islets: effect of ethylene glycol on islet function and cellular composition. Transplantation, 1997,64:1065-1070.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部