期刊文献+

等谱AKNS方程的约化

Reduction of the Isospectral AKNS Equation
下载PDF
导出
摘要 通过对等谱AKNS方程的约化,构造出非线性Schrodinger和mKdV方程的新双Wronskian解;分别推导出这2个方程的双Wronskian形式的有理解。 By the reduction of the isospectral AKNS equations, generalized double Wronskian solutions for the nonlinear Schrodinger and mKdV equation were constructed. Moreover, rational solutions in double Wronskian form for them were derived, respectively.
出处 《海军航空工程学院学报》 2014年第1期97-100,共4页 Journal of Naval Aeronautical and Astronautical University
关键词 等谱AKNS方程 SCHRODINGER方程 MKDV方程 约化 WRONSKIAN技巧 the isospectral AKNS equations Schrodinger equation mKdV equation reduction Wronskian technique
  • 相关文献

参考文献9

  • 1GARDER C S,GREEN J M,MIURA R M. Method for solving the KdV equation[J].{H}Physical Review Letters,1967.1095-1907.
  • 2WADATI M,SANUKI H,KONNO K. Relationshios among inverse method,backlund transformation and infi-nite number of conservation laws[J].Progress Theoretical Physics,1975.419-436.
  • 3HIROTA R. Exact solution of the KdV equation for multi-ple collisions of solitons[J].{H}Physical Review Letters,1971.1192-1194.
  • 4FREEMAN N C,NIMMO J J C. Soliton solutions of the KdV and KP equations:the Wronskian technique[J].{H}Physics Letters A,1983.1-3.
  • 5NIMMO J J C,FREEMAN N C. A method of obtaining the soliton solution of the Boussinesq equation in terms of a Wronskian[J].{H}Physics Letters A,1983.4-6.
  • 6NIMMO J J C. Soliton solutions of three different-differ-ence equations in Wronskian form[J].{H}Physics Letters A,1983.281-286.
  • 7ABLOWITZ M J,SEGUR H. Soliton and the inverse scat-tering transform[M].Philadelphia:The Society for Indus-trial and Applied Mathematics,1981.15-18.
  • 8陈登远,张大军,毕金钵.AKNS方程的新双Wronski解[J].中国科学(A辑),2007,37(11):1335-1348. 被引量:11
  • 9YIN F M,CHEN D Y. Generalized double Wronskian so-lutions for the third-order AKNS equations[J].{H}Chaos Solitons and Fractals,2009.926-932.

二级参考文献8

  • 1Ma W X. Wronskian, generalized Wronskian and solutions to the Korteweg-de Vries equation. Chaos Solitons Fractals, 19:163-170 (2004)
  • 2Ma W X. Complexiton solution to the KdV equation. Phys Lett A, 301:35-44 (2002)
  • 3Freeman N C, Nimmo J J. Soliton solutions of the KdV and KP equations: The Wronskian technique. Phys Left A, 95:1-3 (1983)
  • 4Sirianunpiboon S, Howard S D, Roy S K. A note on the Wronskian form of solutions of the KdV equation. Phys Lett A, 134:31-33 (1988)
  • 5Matveev V B. Generalized Wronskian formula for solutions of the KdV equation: first applications. Phys Lett A, 166:205-208 (1992)
  • 6Ma W X, You Y C. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 357:1753-1778 (2005)
  • 7Ablowitz M J, Kaup D J, Newell A C, et al. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math, 53:249-315 (1974)
  • 8Zhang D J, Hietarinta J. Generalized double-Wronskian solutions to the NLSE. preprint, 2005

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部