期刊文献+

LBPV算法在织物瑕疵检测中的应用 被引量:7

Research on Application of LBPV Algorithm in Defect Detection of Fabrics
下载PDF
导出
摘要 织物瑕疵检测中提取特征是至关重要的,局部二值模式能提取纹理的局部信息,且具有旋转不变性,对光照不敏感的优势。但是在检测经向、纬向分布的线状瑕疵时,瑕疵样本与正常样本的区分不够明显。为了提高LBP算法的性能,提出基于LBPV模式的瑕疵检测算法。融合图像局部区域的对比度信息,将局部区域LBP微模式的权值设置为局部区域的方差,提取图像的LBPV特征向量。同时,根据织物纹理具有周期性和方向性的特点,设计了频域滤波器,消弱正常纹理的频谱信息,突出了疵点信息,方便算法实现疵点的检测。实验表明,基于LBPV模式的检测方法检测正确率达到90%以上,具有实用价值。 It is vital to extract features in defect detection of fabrics. Local binary pattern can extract local information of texture and has advantages of rotational invariance and insensitivity to illumination. However, defective samples and normal samples are not obviously differentiated in the detection of linear defects distributed in warp and weft directions. To improve the performance of LBP algorithm, this paper puts forward a defect detection algorithm based on LBPV mode; integrates the contrast information in local areas of images, sets the weight of LBP micro mode in local areas as the variance of local areas and extracts LBPV feature vector of images; meanwhile designs frequency domain filter according to periodicity and directivity of fabric texture to weaken the frequency spectrum information of normal texture and highlight defect information for the convenience of realizing defect detection. The experiment shows that the detection method based on LBPV mode has an accuracy over 90% and practical value.
出处 《丝绸》 CAS 北大核心 2014年第2期35-39,共5页 Journal of Silk
基金 浙江省自然科学基金项目(LY12F02022) 浙江省教育厅科研项目(Y201328672)
关键词 织物 瑕疵检测 LBP LBPV 图像处理 fabric defect detection LBP LBPV image processing
  • 相关文献

参考文献14

二级参考文献49

  • 1洪琦,沙新华.暗背景下运动发光目标检测[J].吉林大学学报(信息科学版),2006,24(1):94-98. 被引量:1
  • 2步红刚,黄秀宝.基于计算机视觉的织物疵点检测的近期进展[J].东华大学学报(自然科学版),2006,32(3):128-133. 被引量:12
  • 3刘建立,左保齐.基于小波变换和阈值分割的织物疵点边缘检测[J].丝绸,2006,43(8):42-44. 被引量:7
  • 4CHO C S,CHUNG B M,PARK M J.Development of real-time vision-based fabric inspection system[J].IEEE Transactions on Industrial Electronics,2005,52(4):1 073-1 079.
  • 5AJAY K.Computer-vision-based fabric defect detection:a survey[J].IEEE Transactions on Industrial Electronics,2008,55(1):348-363.
  • 6GUAN Shengqi,SHI Xiuhua.Fabric defect detection based on wavelet decomposition with one resolution level[C]//International Symposium on Information Science and Engineering.Shanghai,2008:281-285.
  • 7ALIMOHAMADI H,AHMADYFARD A,SHOJAEE E.Defect detection in textiles using morphological analysis of optimal gabor wavelet filter response[C]//International Conference on Computer and Automation Engineering.Bangkok,2009:26-30.
  • 8TAJERIPOUR F,KABIR E,SHEIKHI A.Fabric defect detection using modified local binary patterns[J].Journal on Advances in Signal Processing,2008(1):1-12.
  • 9LIAO S,LAW W K,CHUNG C S.Dominant local binary patterns for texture classification[J].IEEE Transactions on Image Processing,2009,18(5):1 107-1 118.
  • 10OJALA T,PIETIKAEINEN M,MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.

共引文献21

同被引文献45

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部