期刊文献+

低维幂零李代数的双极化 被引量:1

Dipolarization of Nilpotent Lie Algebra in Low Dimensions
下载PDF
导出
摘要 本文主要讨论低维幂零李代数的双极化,首先找到五维以下的幂零李代数的分类,然后对每一类幂零李代数利用双极化的定义分别构造出它的一个双极化. In this paper we discuss the depolarization of nilpotent Lie algebra in low dimensions. At first we find the classification of nilpotent Lie algebra in low dimensions, then we find a class of dipolrization of the Lie algebra according to the definition of dipolarization of Lie algebra.
出处 《吉林师范大学学报(自然科学版)》 2014年第1期47-50,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(11071106)
关键词 双极化 幂零李代数 交换李代数 半单李代数 降中心序列 李代数 nilpotent lie algebra dipolarization abel lie algebra
  • 相关文献

参考文献10

二级参考文献26

  • 1JAMES E H. Introduction to Lie Algebras and Representation Theory [ M]. New York:Springer-verlag, 1972:25-29.
  • 2WILLEM A. Classification of 6-dim Nilporent Lie Algebras over Fields of Characteristic Not 2 [J ]. Journal of Algebra, 2007, 309 : 640-653.
  • 3Kaneyuki S.Homogeneous symplectic manifolds and dipolarization in Lie algebras[J].Tokyo J Math,1992,15:313-325.
  • 4Libermann P.Sur le probleme d'equivalence de certaines structures infinitesimales[J].Ann Mat Puura Appl,1995,36:27-120.
  • 5Libermann P.Sur les structures presque paracomplexes[J].C R Acad Pairs,1952,234:2 517-2 519.
  • 6Deng S Q.A class of diolarizations in parabolic subalgebras of semisimple Lie algebras[J].Chinese Journal of Contemporary Mathematics,2006,27(1):25-31.
  • 7Yang M S,Meng D J.Dipolarization in quadratic Lie algebras and homogeneous para-Kāhler manifolds[J].Journal of Physics A:Mathematical and General,2002,35:6 495-6 503.
  • 8Hou Z,J Lie Theory,1999年,9卷,1期,215页
  • 9Meng D,Yokohama Math J,1995年,43卷,117页
  • 10Deng S,Tokyo J Math,1993年,16卷,2期,509页

共引文献12

同被引文献11

  • 1PLATONOV V P, POTAPCHIK A E. New Combinatorial Proper- ties of Linear Group Algebra[ M]. Waterloo: Journal of Algebra, 2001 : 3 -451.
  • 2TaBreab O H, CaMcouoB IO B. YnanoTeaTaOCTb O6pasa Yipe~cTaaneH~q F2 (x,y) MaTpaUaM~ a3 GL( n, C), n = 2,3,4, Fipn Ycnosan OTo6pax~esaa 06pa3ymmmx ~ I~pHMHTHBHblX ~gJleMenToS B YaanoTenXsble MaTpa~bI [ .I ]. ~Oga. HAH Beaapyc~, 2001, 45 (6): 29- 32.
  • 3TAVGEN O I, DU Junhua, LIU Chunyan. The Representation Im- age Unipotency of the Group F2 by mapping Primitive Elements into Unipotent Matrices with Small Jordan Blocks[ J]. Problems of Physics, Mathematics and Technics,2011,3 (8) :81 - 83.
  • 4H CHHbCYH. ,/L~nel~IFIbIe HpyRcTaBaeHHa CBO6ORHbIX Fpynn [M]. PHBIII: Mmlcx, 2011:11-61.
  • 5MAFHYC B, KAPPAC A, CO~HT3p ~. KOM6HHaTOpHaa Teopvm Fpyrm: Hpe~cTaBneH~e Fpylm B TepM~max O6pa3ylomHx H CooTHomeimI~ FIo~ Pen [ J ]. M. J~. Fp~tH~mHrepa. HaABo Hayxa, 1974, 2(3) : 22 -36.
  • 6COHEN A M, GRAAF W A. de R6NYAI L. Computation in Fi- nite-dimensional Lie Algebras[J]. Discrete Mathematics & Theo- retical Computer Science, 1997, 1 (1) :53 -62.
  • 7LIU Wende, HUA Xiuying, SU Yucai. Derivations for the Even Parts of the Odd in Modular Case [ J ] Acta Math. Sin. English Ser, 2009, 25(3) : 355 -378.
  • 8姜翠波,孟道骥.某些完备李代数的结构[J].数学学报(中文版),1998,41(2):267-274. 被引量:2
  • 9REN BinSichuan Teachers College, Nanchong 637002, China.Completable nilpotent Lie algebra[J].Chinese Science Bulletin,1997,42(21):1847-1847. 被引量:1
  • 10华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,18(1):76-79. 被引量:3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部